Biological and Pharmacological Enhancement of Regeneration in Chronic Spinal Cord Injury

Hachem, L. D., Ahuja, C. S., & Fehlings, M. G. (2017). Assessment and management of acute spinal cord injury: From point of injury to rehabilitation. Journal of Spinal Cord Medicine, 40, 665–675. https://doi.org/10.1080/10790268.2017.1329076

Article  PubMed  PubMed Central  Google Scholar 

John, P. S., Paulose, C. S., & Sreekanth, R. (2010). Effect of neurotransmitters and bone marrow cells for neuronal regeneration in iatrogenic spinal cord injury: An experimental study. Indian Journal of Orthopaedics, 44(3), 252–256.

Article  PubMed  PubMed Central  Google Scholar 

Chhabra, H. S., Sarda, K., Arora, M., Sharawat, R., Singh, V., Nanda, A., Sangodimath, G. M., & Tandon, V. (2016). Autologous bone marrow cell transplantation in acute spinal cord injury—an Indian pilot study. Spinal Cord, 54, 57–64.

Article  CAS  PubMed  Google Scholar 

Jarocha, D., Milczarek, O., Kawecki, Z., Wendrychowicz, A., Kwiatkowski, S., & Majka, M. (2014). Preliminary study of autologous bone marrow nucleated cells transplantation in children with spinal cord injury. Stem Cells Translational Medicine, 3, 395–404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu, W., Zhang, F., Xue, Q., Ma, Z., Lu, P., & Yu, B. (2010). Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology, 30, 205–217.

Article  PubMed  Google Scholar 

Miura, M., Miura, Y., Padilla-Nash, H. M., et al. (2006). Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells, 24, 1095–1103.

Article  PubMed  Google Scholar 

Bryukhovetskiy, A. S., & Bryukhovetskiy, I. S. (2015). Effectiveness of repeated transplantations of hematopoietic stem cells in spinal cord injury. World Journal of Transplantation, 5(3), 110–128.

PubMed  PubMed Central  Google Scholar 

Xiong, L. L., Liu, F., Deng, S. K., et al. (2017). Transplantation of hematopoietic stem cells promotes functional improvement associated with NT-3-MEK-1 activation in spinal cord-transected rats. Frontiers in Cellular Neuroscience, 11, 213–214.

PubMed  PubMed Central  Google Scholar 

Frolov, A. A., & Bryukhovetskiy, A. S. (2012). Effects of hematopoietic autologous stem cell transplantation to the chronically injured human spinal cord evaluated by motor and somatosensory evoked potentials methods. Cell Transplantation, 21(1), 49–55.

Google Scholar 

Schäfer, R., DeBaun, M. R., Fleck, E., et al. (2019). Quantitation of progenitor cell populations and growth factors after bone marrow aspirate concentration. Journal of Translational Medicine, 17, 115–124. https://doi.org/10.1186/s12967-019-1866-7

Article  PubMed  PubMed Central  Google Scholar 

Scarpone, M., Kuebler, D., Chambers, A., et al. (2019). Isolation of clinically relevant concentrations of bone marrow mesenchymal stem cells without centrifugation. Journal of Translational Medicine, 17, 10–20. https://doi.org/10.1186/s12967-018-1750-x

Article  PubMed  PubMed Central  Google Scholar 

Iencean, M., & Ciurea, A. V. (2009). Autologous bone marrow implant into traumatic chronic spinal cord injury. American Journal of Neuroprotection and Neuroregeneration, 1, 73–77.

Article  Google Scholar 

Shehadi, J. A., Elzein, S. M., Beery, P., et al. (2021). Combined administration of platelet-rich plasma and autologous bone marrow aspirate concentrate for spinal cord injury: A descriptive case series. Neural Regeneration Research, 16(2), 362–366. https://doi.org/10.4103/1673-5374.290903

Article  PubMed  Google Scholar 

Huang, H., Sharma, H., Chen, L., et al. (2018). Review of clinical neurorestorative strategies for spinal cord injury: Exploring history and latest progresses. Journal of Neurorestoratology, 6, 171–178.

Article  Google Scholar 

Cakir, E., Usul, H., Peksoylu, B., et al. (2005). Effects of citicoline on experimental spinal cord injury. Journal of Clinical Neuroscience, 12(8), 923–926.

Article  CAS  PubMed  Google Scholar 

Krupinski, J., Abudawood, M., Matou-Nasri, S., et al. (2012). Citicoline induces angiogenesis improving survival of vascular/human brain microvessel endothelial cells through pathways involving ERK1/2 and insulin receptor substrate-1. Vascular Cell, 4, 4–20.

Article  Google Scholar 

Paulose, C. S., John, P. S., Chinthu, R., et al. (2017). Spinal cord regeneration by modulating bone marrow with neurotransmitters and citicoline: Analysis at micromolecular level. Biomedical Journal, 40(2), 94–100.

Article  PubMed  PubMed Central  Google Scholar 

Kanekiyo, K., Nakano, N., Homma, T., et al. (2017). Effects of multiple-injection of bone marrow mononuclear cells on spinal cord injury of rats. Journal of Neurotrauma, 34, 21–26. https://doi.org/10.1089/neu.2016.4841

Article  Google Scholar 

Adel, N., Gabr, H., Hamdy, S., Afifi, L., & Mahmoud, H. (2009). Stem cell therapy in chronic spinal cord injuries. Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 46(2), 467–478.

Google Scholar 

Oh, S. K., & Jeon, S. R. (2016). Current concept of stem cell therapy for spinal cord injury: A review. Korean Journal of Neurotrauma, 12(2), 40–46.

CAS  PubMed  PubMed Central  Google Scholar 

Park, J. H., Kim, D. Y., Sung, I. Y., et al. (2012). Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery, 70, 1238–1247.

PubMed  Google Scholar 

Huang, H., Young, W., Skaper, S., et al. (2020). Clinical neurorestorative therapeutic guidelines for spinal cord injury (IANR/CANR version 2019). Journal of Orthopaedic Translation, 20, 14–24.

PubMed  Google Scholar 

Park, H. C., Shim, Y. S., Ha, Y., et al. (2005). Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte macrophage colony stimulating factor. Tissue Engineering, 11(5–6), 913–922.

CAS  PubMed  Google Scholar 

Bolandghamat, S. M., & Behnam-Rassouli, M. (2020). Recent findings on the effects of pharmacological agents on the nerve regeneration after peripheral nerve injury. Current Neuropharmacology, 18, 1154–1163.

CAS  PubMed  PubMed Central  Google Scholar 

Oh, S. K., Choi, K. H., Yoo, J. Y., et al. (2016). A phase III clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury. Neurosurgery, 78(3), 436–447.

PubMed  Google Scholar 

Marwdziak, M., Umieszek, A., Chrzastek, K., Basinska, K., & Marycz, K. (2015). Physical activity increases the total number of bone-marrow-derived mesenchymal stem cells, enhances their osteogenic potential, and inhibits their adipogenic properties. Stem Cells International, 2015, 379093. https://doi.org/10.1155/2015/379093

Article  Google Scholar 

Chang, Y., Jung, T. D., Yoo, D. S., & Hyun, J. K. (2010). Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury. Journal of Neurotrauma, 27, 2033–2040.

PubMed  Google Scholar 

Ellingson, B. M., Ulmer, J. L., Kurpad, S. N., & Schmit, B. D. (2008). Diffusion tensor MR imaging in chronic spinal cord injury. AJNR. American Journal of Neuroradiology, 29, 1976–1982.

CAS  PubMed  PubMed Central  Google Scholar 

Rajasekaran, S., Kanna, R. M., & Shetty, A. P. (2012). Diffusion tensor imaging of the spinal cord and its clinical applications. Journal of Bone and Joint Surgery. British Volume, 94, 1024–1031.

CAS  PubMed  Google Scholar 

Alkadeem, R. M. D. A. E. A. A., El-Shafey, M. H. R., Seif Eldein, A. E. M., & Nagy, H. A. (2021). Magnetic resonance diffusion tensor imaging of acute spinal cord injury in spinal trauma. Egyptian Journal of Radiology and Nuclear Medicine, 52, 70. https://doi.org/10.1186/s43055-021-00502-x

Article  Google Scholar 

Comments (0)

No login
gif