Tencer, A. F., & Johnson, K. D. (1994). Biomechanics in orthopaedic trauma. Martin Dunitz.
Brandi, M. L. (2009). Microarchitecture, the key to bone quality. Rheumatology, 48, iv3–iv8.
An, Y. H. (2003). Orthopaedic issues in osteoporosis. CRC Press.
van der Meulen, M. C. H., Wright, T., & Chen, J. T. (2016). Musculoskeletal biomechanics. Orthopaedic Knowledge Online Journal, 14(8), 3. https://doi.org/10.5435/OKOJ14-8-3
Chappard, D., Basle, M.-F., Legrand, E., & Audran, M. (2008). Trabecular bone microarchitecture: A review. Morphologie, 92, 162–170.
Article PubMed CAS Google Scholar
Freidman, A. W. (2006). Important determinants of bone strength. Beyond bone mineral density. J Clinical Rheumatology, 12, 70–77.
Seeman, E., & Delmas, P. D. (2006). Bone quality—The material and structural basis of bone strength and fragility. New England Journal of Medicine, 354, 2250–2261.
Article PubMed CAS Google Scholar
Ego, S. (2002). Pathogenesis of bone fragility in women and men. Lancet, 359, 1841–1850.
Cochran, G. V. B. (1982). A primer of orthopaedic biomechanics. Churchill Livingstone.
Gordon, J. E. (1978). Structures or why things don’t fall down. Penguin Books.
Osterhoff, G., Morgan, E. F., Shefelbine, S. J., Karim, L., McNamara, L. M., & Augat, P. (2016). Bone mechanical properties and changes with ageing. Injury, 47(S2), S11–S20.
Article PubMed PubMed Central Google Scholar
Burstein, A. H., & Wright, T. M. (1994). Fundamentals of orthopaedic biomechanics. Williams and Wilkins.
Carter, D. R., Blenman, P. R., & Beaupre, G. S. (1988). Correlation between mechanical stress history and tissue differentiation in initial fracture healing. J Orthopedic Research, 6, 736–748.
Gautier, E., & Sommer, C. (2003). Guidelines for clinical application of the LCP. Injury, 34, S-B63-S−B76.
Stoffel, K., Dieter, U., Stackowiak, G., Gatcher, A., & Kuster, M. S. (2003). Biomechanical testing of the LCP-How can stability in locked internal fixators be controlled? Injury, 34, S-B11-S−B19.
Mardian, S., Schaser, K. D., Duda, G. N., & Heyland, M. (2015). Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clinical Biomechanics, 30, 391–396.
Chao, P., Lewis, D. D., Kowaleski, M. P., & Pozzi, A. (2012). Biomechanical concepts applicable to minimally invasive fracture repair in small animals. Veterinary Clinics of Small Animals, 42, 853–872.
Kiner, D. W., Rouhipur, V., & Kellam, J. F. (2007). Biomechanics of locked plate fixation. Techniques in Orthopaedics, 22(3), 151–155.
Cornier, P., Pietu, G., Dujardin, C., Bigorre, N., Ducellier, F., & Gerard, R. (2010). The concept of locking plates. Orthopaedics and Traumatology. Surgery and Research, 96S, S17–S36.
Yaacobi, E., Sanchez, D., Maniar, H., & Horwitz, D. S. (2017). Surgical treatment of osteoporotic fractures: An update on the principles of management. Injury, 48S, S34–S40.
Rommens, P. M. (2019). Paradigm shift in geriatric fracture treatment. European Journal of Trauma and Emergency Surgery. https://doi.org/10.1007/s00068-019-01080-x
Egol, K. A., Kubiak, E. N., Fulkerson, E., Kummer, F. J., & Koval, K. J. (2004). Biomechanics of locked plates and screws. J Orthopaedic Trauma, 18, 488–493.
Miller, D. L., & Goswami, T. (2007). A review of locking compression plate biomechanics and their advantages as internal fixator in fracture healing. Clinical Biomechanics, 22, 1049–1062.
Marecek, G., & Centomo, H. (2019). Augmented fixation for fractures of the appendicular skeleton. Journal of American Academy of Orthopaedic Surgeons, 27, 823–833.
Scheutze, K., Eickhoff, A., Roderer, G., Gebhard, F., & Richter, P. H. (2019). Osteoporotic bone: When and how to use augmentation. Journal of Orthopaedic Trauma, 33(12S), S21–S26.
Hollensteiner, M., Sandriesser, S., Bliven, E., von Ruden, C., & Augat, P. (2019). Biomechanics of osteoporotic fixation. Current Osteoporosis Reports, 17, 363–374.
Comments (0)