Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13:25–36. https://doi.org/10.1038/nrneurol.2016.187.
Article CAS PubMed Google Scholar
Zarghami A, Li Y, Claflin SB, et al. Role of environmental factors in multiple sclerosis. Expert Rev Neurother. 2021;21:1389–408. https://doi.org/10.1080/14737175.2021.1978843.
Article CAS PubMed Google Scholar
International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365:eaav7188. https://doi.org/10.1126/science.aav7188.
Article CAS PubMed Central Google Scholar
Handel AE, Williamson AJ, Disanto G, et al. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS ONE. 2010;5: e12496. https://doi.org/10.1371/journal.pone.0012496.
Article CAS PubMed PubMed Central Google Scholar
Hernán MA, Zhang SM, Lipworth L, et al. Multiple sclerosis and age at infection with common viruses. Epidemiology. 2001;12:301–6. https://doi.org/10.1097/00001648-200105000-00009.
Endriz J, Ho PP, Steinman L. Time correlation between mononucleosis and initial symptoms of MS. Neurol Neuroimmunol Neuroinflamm. 2017. https://doi.org/10.1212/NXI.0000000000000308.
Article PubMed PubMed Central Google Scholar
Jacobs BM, Giovannoni G, Cuzick J, Dobson R. Systematic review and meta-analysis of the association between Epstein-Barr virus, multiple sclerosis and other risk factors. Mult Scler. 2020;26:1281–97. https://doi.org/10.1177/1352458520907901.
Article PubMed PubMed Central Google Scholar
Simon KC, O’Reilly EJ, Munger KL, et al. Epstein–Barr virus neutralizing antibody levels and risk of multiple sclerosis. Mult Scler. 2012;18:1185–7. https://doi.org/10.1177/1352458511433920.
Article CAS PubMed PubMed Central Google Scholar
Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science. 2022;375:296–301. https://doi.org/10.1126/science.abj8222.
Article CAS PubMed Google Scholar
Serafini B, Rosicarelli B, Franciotta D, et al. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J Exp Med. 2007;204:2899–912. https://doi.org/10.1084/jem.20071030.
Article CAS PubMed PubMed Central Google Scholar
Magliozzi R, Serafini B, Rosicarelli B, et al. B-cell enrichment and Epstein–Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J Neuropathol Exp Neurol. 2013;72:29–41. https://doi.org/10.1097/NEN.0b013e31827bfc62.
Article CAS PubMed Google Scholar
Willis SN, Stadelmann C, Rodig SJ, et al. Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain. 2009;132:3318–28. https://doi.org/10.1093/brain/awp200.
Article PubMed PubMed Central Google Scholar
Sargsyan SA, Shearer AJ, Ritchie AM, et al. Absence of Epstein–Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology. 2010;74:1127–35. https://doi.org/10.1212/WNL.0b013e3181d865a1.
Article CAS PubMed PubMed Central Google Scholar
Lanz TV, Brewer RC, Ho PP, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022;603:321–7. https://doi.org/10.1038/s41586-022-04432-7.
Article CAS PubMed PubMed Central Google Scholar
Lünemann JD, Jelčić I, Roberts S, et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-γ and IL-2. J Exp Med. 2008;205:1763–73. https://doi.org/10.1084/jem.20072397.
Article CAS PubMed PubMed Central Google Scholar
Thomas OG, Bronge M, Tengvall K, et al. Cross-reactive EBNA1 immunity targets alpha-crystallin B and is associated with multiple sclerosis. Sci Adv. 2023;9:eadg3032. https://doi.org/10.1126/sciadv.adg3032.
Article CAS PubMed PubMed Central Google Scholar
Li Q, Cohen JI. Epstein–Barr virus and the human leukocyte antigen complex. Curr Clin Microbiol Rep. 2019;6:175–81. https://doi.org/10.1007/s40588-019-00120-9.
Article PubMed PubMed Central Google Scholar
Agostini S, Mancuso R, Caputo D, et al. EBV and multiple sclerosis: expression of LMP2A in MS patients. Front Neurosci. 2024;18:1385233. https://doi.org/10.3389/fnins.2024.1385233.
Article PubMed PubMed Central Google Scholar
Angelini DF, Serafini B, Piras E, et al. Increased CD8+ T cell response to Epstein–Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog. 2013;9: e1003220. https://doi.org/10.1371/journal.ppat.1003220.
Article CAS PubMed PubMed Central Google Scholar
Pagano JS, Whitehurst CB, Andrei G. Antiviral drugs for EBV. Cancers (Basel). 2018;10:E197. https://doi.org/10.3390/cancers10060197.
Cui X, Snapper CM. Epstein Barr virus: development of vaccines and immune cell therapy for EBV-associated diseases. Front Immunol. 2021;12:734471. https://doi.org/10.3389/fimmu.2021.734471.
Ioannides ZA, Csurhes PA, Douglas NL, et al. Sustained clinical improvement in a subset of patients with progressive multiple sclerosis treated with Epstein–Barr virus-specific T cell therapy. Front Neurol. 2021;12:652811. https://doi.org/10.3389/fneur.2021.652811.
De Paor M, O’Brien K, Fahey T, Smith SM. Antiviral agents for infectious mononucleosis (glandular fever). Cochrane Database Syst Rev. 2016. https://doi.org/10.1002/14651858.CD011487.pub2.
Article PubMed PubMed Central Google Scholar
Andrei G, Trompet E, Snoeck R. Novel therapeutics for Epstein−Barr virus. Molecules. 2019;24:997. https://doi.org/10.3390/molecules24050997.
Article CAS PubMed PubMed Central Google Scholar
Dobbing J. The blood–brain barrier. Physiol Rev. 1961;41:130–88. https://doi.org/10.1152/physrev.1961.41.1.130.
Article CAS PubMed Google Scholar
Chemaly RF, Hill JA, Voigt S, Peggs KS. In vitro comparison of currently available and investigational antiviral agents against pathogenic human double-stranded DNA viruses: a systematic literature review. Antiviral Res. 2019;163:50–8. https://doi.org/10.1016/j.antiviral.2019.01.008.
Article CAS PubMed Google Scholar
Colby BM, Shaw JE, Elion GB, Pagano JS. Effect of acyclovir [9-(2-hydroxyethoxymethyl)guanine] on Epstein-Barr virus DNA replication. J Virol. 1980;34:560–8. https://doi.org/10.1128/JVI.34.2.560-568.1980.
Article CAS PubMed PubMed Central Google Scholar
Andersson J, Sköldenberg B, Henle W, et al. Acyclovir treatment in infectious mononucleosis: a clinical and virological study. Infection. 1987;15(Suppl 1):S14-20. https://doi.org/10.1007/BF01650106.
Rafailidis PI, Mavros MN, Kapaskelis A, Falagas ME. Antiviral treatment for severe EBV infections in apparently immunocompetent patients. J Clin Virol. 2010;49:151–7. https://doi.org/10.1016/j.jcv.2010.07.008.
Comments (0)