Fisher RS, van Emde BW, Blume W, Elger C, Genton P, Lee P, Engel J Jr. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–2. https://doi.org/10.1111/j.0013-9580.2005.66104.x.
De Curtis M, Uva L, Gnatkovsky V, Librizzi L. Potassium dynamics and seizures: why is potassium ictogenic? Epilepsy Res. 2018;143:50–9. https://doi.org/10.1016/j.eplepsyres.2018.04.005.
Article CAS PubMed Google Scholar
Fertziger AP, Ranck JB Jr. Potassium accumulation in interstitial space during epileptiform seizures. Exp Neurol. 1970;26(3):571–85. https://doi.org/10.1016/0014-4886(70)90150-0.
Article CAS PubMed Google Scholar
Bellot-Saez A, Kékesi O, Morley JW, Buskila Y. Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci Biobehav Rev. 2017;77:87–97. https://doi.org/10.1016/j.neubiorev.2017.03.002.
Article CAS PubMed Google Scholar
Benarroch EE. Potassium channels: brief overview and implications in epilepsy. Neurology. 2009;72(7):664–9. https://doi.org/10.1212/01.wnl.0000343739.72081.4e.
Wimmer VC, Reid CA, So EY, Berkovic SF, Petrou S. Axon initial segment dysfunction in epilepsy. J Physiol. 2010;588(Pt 11):1829–40. https://doi.org/10.1113/jphysiol.2010.188417.
Article CAS PubMed PubMed Central Google Scholar
Gao K, Lin Z, Wen S, Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand. 2022;146(6):699–707. https://doi.org/10.1111/ane.13695.
Article CAS PubMed Google Scholar
Niday Z, Tzingounis AV. Potassium channel gain of function in epilepsy: an unresolved paradox. Neuroscientist. 2018;24(4):368–80. https://doi.org/10.1177/1073858418763752.
Article CAS PubMed PubMed Central Google Scholar
Sicca F, Imbrici P, D’Adamo MC, Moro F, Bonatti F, Brovedani P, Grottesi A, Guerrini R, Masi G, Santorelli FM, Pessia M. Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1. Neurobiol Dis. 2011;43(1):239–47. https://doi.org/10.1016/j.nbd.2011.03.016.
Article CAS PubMed Google Scholar
Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Lüders HO, Shi J, Cui J, Richerson GB, Wang QK. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet. 2005;37(7):733–8. https://doi.org/10.1038/ng1585.
Article CAS PubMed Google Scholar
Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol. 2003;65:453–80. https://doi.org/10.1146/annurev.physiol.65.092101.142734.
Article CAS PubMed Google Scholar
Celentano C, Carotenuto L, Miceli F, Carleo G, Corrado B, Baroli G, Iervolino S, Vecchione R, Taglialatela M, Barrese V. Kv7 channel activation reduces brain endothelial cell permeability and prevents kainic acid-induced blood-brain barrier damage. Am J Physiol Cell Physiol. 2024;326(3):C893–904. https://doi.org/10.1152/ajpcell.00709.2023.
Article PubMed PubMed Central Google Scholar
Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543–62. https://doi.org/10.1152/physrev.00011.2013.
Article CAS PubMed PubMed Central Google Scholar
Trimmer JS. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron. 2015;85(2):238–56. https://doi.org/10.1016/j.neuron.2014.12.042.
Article CAS PubMed PubMed Central Google Scholar
Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8(12):982–1001. https://doi.org/10.1038/nrd2983.
Article CAS PubMed PubMed Central Google Scholar
Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci. 2015;72(19):3677–93. https://doi.org/10.1007/s00018-015-1948-5.
Article CAS PubMed PubMed Central Google Scholar
Cooper EC. Potassium channels (including KCNQ) and epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th ed. Bethesda: National Center for Biotechnology Information (US); 2012.
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Caceres AI, Catterall WA, Conner AC, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein SAN, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman AP, Jabba SV, Jarvis M, Jensen AA, Jordt SE, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch JW, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sieghart W, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The concise guide to PHARMACOLOGY 2023/24: ion channels. Br J Pharmacol. 2023;180(Suppl 2):S145–222. https://doi.org/10.1111/bph.16178.
Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science. 1994;266(5187):1068–72. https://doi.org/10.1126/science.7973666.
Article CAS PubMed Google Scholar
Taglialatela M, Ficker E, Wible BA, Brown AM. C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO J. 1995;14(22):5532–41. https://doi.org/10.1002/j.1460-2075.1995.tb00240.x.
Article CAS PubMed PubMed Central Google Scholar
Eccles RM, Libet B. Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J Physiol. 1961;157(3):484–503. https://doi.org/10.1113/jphysiol.1961.sp006738.
Article CAS PubMed PubMed Central Google Scholar
Kobayashi H, Libet B. Generation of slow postsynaptic potentials without increases in ionic conductance. Proc Natl Acad Sci USA. 1968;60(4):1304–11. https://doi.org/10.1073/pnas.60.4.1304.
Article CAS PubMed PubMed Central Google Scholar
Weight FF, Votava J. Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance. Science. 1970;170(3959):755–8. https://doi.org/10.1126/science.170.3959.755.
Article CAS PubMed Google Scholar
Brown DA, Adams PR. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature. 1980;283(5748):673–6. https://doi.org/10.1038/283673a0.
Article CAS PubMed Google Scholar
Marrion NV. Control of M-current. Annu Rev Physiol. 1997;59:483–504. https://doi.org/10.1146/annurev.physiol.59.1.483.
Article CAS PubMed Google Scholar
Soldovieri MV, Miceli F, Taglialatela M. Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda). 2011;26(5):365–76. https://doi.org/10.1152/physiol.00009.2011.
Article CAS PubMed Google Scholar
Yue C, Yaari Y. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci. 2004;24(19):4614–24. https://doi.org/10.1523/JNEUROSCI.0765-04.2004.
Comments (0)