Targeting Kv7 Potassium Channels for Epilepsy

Fisher RS, van Emde BW, Blume W, Elger C, Genton P, Lee P, Engel J Jr. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–2. https://doi.org/10.1111/j.0013-9580.2005.66104.x.

Article  PubMed  Google Scholar 

De Curtis M, Uva L, Gnatkovsky V, Librizzi L. Potassium dynamics and seizures: why is potassium ictogenic? Epilepsy Res. 2018;143:50–9. https://doi.org/10.1016/j.eplepsyres.2018.04.005.

Article  CAS  PubMed  Google Scholar 

Fertziger AP, Ranck JB Jr. Potassium accumulation in interstitial space during epileptiform seizures. Exp Neurol. 1970;26(3):571–85. https://doi.org/10.1016/0014-4886(70)90150-0.

Article  CAS  PubMed  Google Scholar 

Bellot-Saez A, Kékesi O, Morley JW, Buskila Y. Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci Biobehav Rev. 2017;77:87–97. https://doi.org/10.1016/j.neubiorev.2017.03.002.

Article  CAS  PubMed  Google Scholar 

Benarroch EE. Potassium channels: brief overview and implications in epilepsy. Neurology. 2009;72(7):664–9. https://doi.org/10.1212/01.wnl.0000343739.72081.4e.

Article  PubMed  Google Scholar 

Wimmer VC, Reid CA, So EY, Berkovic SF, Petrou S. Axon initial segment dysfunction in epilepsy. J Physiol. 2010;588(Pt 11):1829–40. https://doi.org/10.1113/jphysiol.2010.188417.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao K, Lin Z, Wen S, Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand. 2022;146(6):699–707. https://doi.org/10.1111/ane.13695.

Article  CAS  PubMed  Google Scholar 

Niday Z, Tzingounis AV. Potassium channel gain of function in epilepsy: an unresolved paradox. Neuroscientist. 2018;24(4):368–80. https://doi.org/10.1177/1073858418763752.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sicca F, Imbrici P, D’Adamo MC, Moro F, Bonatti F, Brovedani P, Grottesi A, Guerrini R, Masi G, Santorelli FM, Pessia M. Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1. Neurobiol Dis. 2011;43(1):239–47. https://doi.org/10.1016/j.nbd.2011.03.016.

Article  CAS  PubMed  Google Scholar 

Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Lüders HO, Shi J, Cui J, Richerson GB, Wang QK. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet. 2005;37(7):733–8. https://doi.org/10.1038/ng1585.

Article  CAS  PubMed  Google Scholar 

Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol. 2003;65:453–80. https://doi.org/10.1146/annurev.physiol.65.092101.142734.

Article  CAS  PubMed  Google Scholar 

Celentano C, Carotenuto L, Miceli F, Carleo G, Corrado B, Baroli G, Iervolino S, Vecchione R, Taglialatela M, Barrese V. Kv7 channel activation reduces brain endothelial cell permeability and prevents kainic acid-induced blood-brain barrier damage. Am J Physiol Cell Physiol. 2024;326(3):C893–904. https://doi.org/10.1152/ajpcell.00709.2023.

Article  PubMed  PubMed Central  Google Scholar 

Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543–62. https://doi.org/10.1152/physrev.00011.2013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trimmer JS. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron. 2015;85(2):238–56. https://doi.org/10.1016/j.neuron.2014.12.042.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8(12):982–1001. https://doi.org/10.1038/nrd2983.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci. 2015;72(19):3677–93. https://doi.org/10.1007/s00018-015-1948-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper EC. Potassium channels (including KCNQ) and epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th ed. Bethesda: National Center for Biotechnology Information (US); 2012.

Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Caceres AI, Catterall WA, Conner AC, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein SAN, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman AP, Jabba SV, Jarvis M, Jensen AA, Jordt SE, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch JW, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sieghart W, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The concise guide to PHARMACOLOGY 2023/24: ion channels. Br J Pharmacol. 2023;180(Suppl 2):S145–222. https://doi.org/10.1111/bph.16178.

Article  PubMed  Google Scholar 

Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science. 1994;266(5187):1068–72. https://doi.org/10.1126/science.7973666.

Article  CAS  PubMed  Google Scholar 

Taglialatela M, Ficker E, Wible BA, Brown AM. C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO J. 1995;14(22):5532–41. https://doi.org/10.1002/j.1460-2075.1995.tb00240.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eccles RM, Libet B. Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J Physiol. 1961;157(3):484–503. https://doi.org/10.1113/jphysiol.1961.sp006738.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi H, Libet B. Generation of slow postsynaptic potentials without increases in ionic conductance. Proc Natl Acad Sci USA. 1968;60(4):1304–11. https://doi.org/10.1073/pnas.60.4.1304.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weight FF, Votava J. Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance. Science. 1970;170(3959):755–8. https://doi.org/10.1126/science.170.3959.755.

Article  CAS  PubMed  Google Scholar 

Brown DA, Adams PR. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature. 1980;283(5748):673–6. https://doi.org/10.1038/283673a0.

Article  CAS  PubMed  Google Scholar 

Marrion NV. Control of M-current. Annu Rev Physiol. 1997;59:483–504. https://doi.org/10.1146/annurev.physiol.59.1.483.

Article  CAS  PubMed  Google Scholar 

Soldovieri MV, Miceli F, Taglialatela M. Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda). 2011;26(5):365–76. https://doi.org/10.1152/physiol.00009.2011.

Article  CAS  PubMed  Google Scholar 

Yue C, Yaari Y. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci. 2004;24(19):4614–24. https://doi.org/10.1523/JNEUROSCI.0765-04.2004.

Article  CAS  PubMed 

Comments (0)

No login
gif