Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21:174–87.
Grover S, Nguyen JA, Reinhart RMG. Synchronizing brain rhythms to improve cognition. Annu Rev Med. 2021;72:29–43.
Article CAS PubMed Google Scholar
Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci USA. 2019;116:5747–55.
Article CAS PubMed PubMed Central Google Scholar
Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci USA. 2010;107:3228–33.
Article CAS PubMed PubMed Central Google Scholar
Grover S, Wen W, Viswanathan V, Gill CT, Reinhart RMG. Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci. 2022;25:1237–46.
Article CAS PubMed PubMed Central Google Scholar
Zhou D, Li A, Li X, Zhuang W, Liang Y, Zheng C-Y, et al. Effects of 40 Hz transcranial alternating current stimulation (tACS) on cognitive functions of patients with Alzheimer’s disease: a randomised, double-blind, sham-controlled clinical trial. J Neurol Neurosurg Psychiatry. 2022;93:568–70.
Benussi A, Cantoni V, Grassi M, Brechet L, Michel CM, Datta A, et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Annu Neurol. 2022;92:322–34.
Simons JS, Ritchey M, Fernyhough C. Brain mechanisms underlying the subjective experience of remembering. Annu Rev Psychol. 2022;73:159–86.
Tavakoli AV, Yun K. Transcranial alternating current stimulation (tACS) mechanisms and protocols. Front Cell Neurosci. 2017;11:214.
Article PubMed PubMed Central Google Scholar
Underwood E. Cadaver study challenges brain stimulation methods. Science. 2016;352:397.
Article CAS PubMed Google Scholar
Opitz A, Falchier A, Linn GS, Milham MP, Schroeder CE. Limitations of ex vivo measurements for in vivo neuroscience. Proc Natl Acad Sci. 2017;114:5243–6.
Article CAS PubMed PubMed Central Google Scholar
Gallen CL, D’Esposito M. Brain modularity: a biomarker of intervention-related plasticity. Trends Cognit Sci. 2019;23:293–304.
Johnson L, Alekseichuk I, Krieg J, Doyle A, Yu Y, Vitek J, et al. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. Sci Adv. 2020;6:eaaz2747.
Article CAS PubMed PubMed Central Google Scholar
Huang WA, Stitt IM, Negahbani E, Passey DJ, Ahn S, Davey M, et al. Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform. Nat Commun. 2021;12:3151.
Article CAS PubMed PubMed Central Google Scholar
Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24:333–9.
Article CAS PubMed Google Scholar
Kurmann R, Gast H, Schindler K, Fröhlich F. Rational design of transcranial alternating current stimulation: identification, engagement, and validation of network oscillations as treatment targets. Clin Transl Neurosci. 2018;2:33. 2514183×18793515.
Bradley C, Nydam AS, Dux PE, Mattingley JB. State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci. 2022;23:459–75.
Article CAS PubMed Google Scholar
Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T, et al. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat Commun. 2017;8:1199.
Article PubMed PubMed Central Google Scholar
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. npj Sci Learn. 2023;8:1.
Article PubMed PubMed Central Google Scholar
Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cognit Sci. 2023;27:189–205.
Chen S, Tan Z, Xia W, Gomes CA, Zhang X, Zhou W, et al. Theta oscillations synchronize human medial prefrontal cortex and amygdala during fear learning. Sci Adv. 2021;7:eabf4198.
Article PubMed PubMed Central Google Scholar
Zheng J, Stevenson RF, Mander BA, Mnatsakanyan L, Hsu FPK, Vadera S, et al. Multiplexing of theta and alpha rhythms in the amygdala-hippocampal circuit supports pattern separation of emotional information. Neuron. 2019;102:887–98.
Article CAS PubMed PubMed Central Google Scholar
Pacheco Estefan D, Sánchez-Fibla M, Duff A, Principe A, Rocamora R, Zhang H, et al. Coordinated representational reinstatement in the human hippocampus and lateral temporal cortex during episodic memory retrieval. Nat Commun. 2019;10:2255.
Article CAS PubMed PubMed Central Google Scholar
Han S, Li XX, Wei S, Zhao D, Ding J, Xu Y, et al. Orbitofrontal cortex-hippocampus potentiation mediates relief for depression: a randomized double-blind trial and TMS-EEG study. Cell Rep Med. 2023;4:101060.
Article PubMed PubMed Central Google Scholar
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.
Article CAS PubMed Google Scholar
Brunyé TT, Beaudoin ME, Feltman KA, Heaton KJ, McKinley RA, Vartanian O et al. Neuroenhancement in military personnel: conceptual and methodological promises and challenges. In: NATO Symposium on Applying Neuroscience to Performance: From Rehabilitation to Human Cognitive 2021, Rome, Italy, 11-12 October 2021. 2022
Higgins N, Forlini C, Butorac I, Gardner J, Carter A. Anticipating the future of neurotechnological enhancement. In: The Routledge Handbook of the Ethics of Human Enhancement. New York, NY, USA: Routledge. 2024. p. 237–50.
Illes J, Hossain S. Neuroethics: anticipating the future. New York, NY, USA: Oxford University Press; 2017.
Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan, Italy. IEEE; 2015. p. 222–5.
Puonti O, Van Leemput K, Saturnino GB, Siebner HR, Madsen KH, Thielscher A. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling. NeuroImage. 2020;219:117044.
Shan Y, Wang H, Yang Y, Wang J, Zhao W, Huang Y, et al. Evidence of a large current of transcranial alternating current stimulation directly to deep brain regions. Mol Psychiatry. 2023;28:5402–10.
Article CAS PubMed PubMed Central Google Scholar
Louviot S, Tyvaert L, Maillard LG, Colnat-Coulbois S, Dmochowski J, Koessler L. Transcranial electrical stimulation generates electric fields in deep human brain structures. Brain Stimulation. 2022;15:1–12.
Weinrich CA, Brittain JS, Nowak M, Salimi-Khorshidi R, Brown P, Stagg CJ. Modulation of long-range connectivity patterns via frequency-specific stimulation of human cortex. Curr Biol. 2017;27:3061–3068.e3.
Article CAS PubMed PubMed Central Google Scholar
Clancy KJ, Andrzejewski JA, You Y, Rosenberg JT, Ding M, Li W. Transcranial stimulation of alpha oscillations up-regulates the default mode network. Proc Natl Acad Sci USA. 2022;119:e2110868119.
Comments (0)