Arias Z, Nizami MZI, Chen X, Xu B, Kuang C, Omori K, Takashiba S: Recent advances in apical periodontitis treatment: a narrative review. Bioengineering, https://doi.org/10.3390/bioengineering10040488, April 19, 2023.
Article PubMed PubMed Central Google Scholar
Tibúrcio-Machado CS, Michelon C, Zanatta FB, Gomes MS, Marin JA, Bier CA: The global prevalence of apical periodontitis: a systematic review and meta-analysis. Int Endod J, https://doi.org/10.1111/iej.13467, Jan 22, 2021.
Loesche WJ: Medical microbiology, 4th edition, Galveston: University of Texas Medical Branch at Galveston; 1996.
Zero DT, Zandona AF, Vail MM, Spolnik KJ: Dental caries and pulpal disease. Dent Clin North Am, 55(1):29–46, 2011.
Tanomaru-Filho M, Jorge EG, Duarte MA, Gonçalves M, Guerreiro-Tanomaru JM: Comparative radiographic and histological analyses of periapical lesion development. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 107(3):442-447, 2009.
Ørstavik D, Kerekes K, Eriksen HM: The periapical index: a scoring system for radiographic assessment of apical periodontitis. Dent Traumatol, 2(1):20–34, 1986.
Panyarak W, Wantanajittikul K, Suttapak W, Charuakkra A, Prapayasatok S: Feasibility of deep learning for dental caries classification in bitewing radiographs based on the ICCMS™ radiographic scoring system. Oral Surg Oral Med Oral Pathol Oral Radiol, https://doi.org/10.1016/j.oooo.2022.06.012, July 2, 2022.
Suttapak W, Panyarak W, Jira-apiwattana D, Wantanajittikul K: A unified convolution neural network for dental caries classification. ECTI Trans Comput Inf Technol ECTI-CIT, https://doi.org/10.37936/ecti-cit.2022162.245901, June 4, 2022.
Sadr S, Mohammad-Rahimi H, Motamedian SR, Zahedrozegar S, Motie P, Vinayahalingam S, Dianat O, Nosrat A: Deep learning for detection of periapical radiolucent lesions: a systematic review and meta-analysis of diagnostic test accuracy. J Endod, https://doi.org/10.1016/j.joen.2022.12.007, December 21, 2022.
Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data, https://doi.org/10.1186/s40537-021-00444-8, March 31, 2021.
Article PubMed PubMed Central Google Scholar
Krizhevsky A, Sutskever I, Hinton GE: ImageNet classification with deep convolutional neural networks. Proceedings of the 26th annual conference on neural information processing systems 2012, 60(6): 84–90, 2012.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions. Proceedings of the 2015 IEEE Conference on computer vision and pattern recognition, 1–9, 2015.
He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on computer vision and pattern recognition, 770–778, 2016.
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI: A survey on deep learning in medical image analysis. Med Image Anal, https://doi.org/10.1016/j.media.2017.07.005, July 26, 2017.
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, https://doi.org/10.1001/jama.2016.17216, December 13, 2016.
Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A, Fujita H: Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med, https://doi.org/10.1016/j.compbiomed.2016.11.0032017, January 1, 2017.
Al-Ghamdi ASA, Ragab M, AlGhamdi SA, Asseri AH, Mansour RF, Koundal D: Detection of dental diseases through X-ray images using neural search architecture network. Comput Intell Neurosci, https://doi.org/10.1155/2022/3500552, April 30, 2022.
Article PubMed PubMed Central Google Scholar
Mao YC, Chen TY, Chou HS, Lin SY, Liu SY, Chen YA, Liu YL, Chen CA, Huang YC, Chen SL, Li CW, Abu PAR, Chiang WY: Caries and restoration detection using bitewing film based on transfer learning with CNNs. Sensors (Basel), https://doi.org/10.3390/s21134613, Jul 5, 2021.
Article PubMed PubMed Central Google Scholar
Rajasekhar R, Soman S, Sebastian VM, Muliyar S, Cherian NM: Indexes for periapical health evaluation: a review. Int Dent Res, 2022;12(2):97-106.
Maia Filho EM, Calisto AM, De Jesus Tavarez RR, de Castro Rizzi C, Bezerra Segato RA, Bezerra da Silva LA: Correlation between the periapical index and lesion volume in cone-beam computed tomography images, Iran Endod J, 2018 Spring;13(2):155–158.
Moidu NP, Sharma S, Chawla A, Kumar V, Logani A: Deep learning for categorization of endodontic lesion based on radiographic periapical index scoring system. Clin Oral Investig, https://doi.org/10.1007/s00784-021-04043-y, July 2, 2021.
Issa J, Jaber M, Rifai I, Mozdziak P, Kempisty B, Dyszkiewicz-Konwińska M: Diagnostic test accuracy of artificial intelligence in detecting periapical periodontitis on two-dimensional radiographs: a retrospective study and literature review. Medicina (Kaunas), https://doi.org/10.3390/medicina59040768, April 15, 2023.
Bachani L, Singh M, Anshul, Lingappa A: Ideal radiographs: an insight. IP Int J Maxillofac Imaging, 6(3):56–64, 2020.
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D: Grad-CAM: Visual explanations from deep networks via gradient-based localization. Proceedings of the 2017 IEEE International conference on computer vision, 618–626, 2017.
Ying X: An overview of overfitting and its solutions. J Phys Conf Ser, 1168(2):022022, 2019.
Mooijman P, Catal C, Tekinerdogan B, Lommen A, Blokland M: The effects of data balancing approaches: a case study. Appl Soft Comput, 132:109853, 2023.
Comments (0)