Ambani LM, Melvin H, Van Woert MH, Murphy S (1975) Brain peroxidase and catalase in Parkinson disease. Arch Neurol 32:114–118
Article CAS PubMed Google Scholar
Anton AH, Sayre DF (1962) A study of the factors affecting the aluminum oxide trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138:360–375
Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517
Article CAS PubMed Google Scholar
Ben-Shachar D, Riederer P, Youdim MBH (1991) Iron–melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 57(5):1609–1614. https://doi.org/10.1111/j.1471-4159.1991.tb06358.x
Article CAS PubMed Google Scholar
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20(4):415–455. https://doi.org/10.1016/0022-510x(73)90175-5
Article CAS PubMed Google Scholar
Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282(21):15597–15605. https://doi.org/10.1074/jbc.M610893200
Article CAS PubMed Google Scholar
Borghammer P, Van Den Berge N (2019) Brain-first versus gut-first Parkinson’s disease: a hypothesis. J Parkinson’s Dis 9(s2):S281–S295. https://doi.org/10.3233/JPD-191721
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/s0197-4580(02)00065-9
Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Kranic D (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357(6357):1255–1261. https://doi.org/10.1126/science.aam9080
Article ADS CAS PubMed PubMed Central Google Scholar
Cai W, Wakamatsu K, Zucca FA, Wang Q, Yang K, Mohamadzadehonarvar N, Srivastava P, Tanaka H, Holly G, Casella L, Ito S, Zecca L, Chen X (2023) DOPA pheomelanin is increased in nigral neuromelanin of Parkinson’s disease. Prog Neurobiol 223:102414. https://doi.org/10.1016/j.pneurobio.2023.102414
Article CAS PubMed Google Scholar
Carlsson A (1981) Aging and brain neurotransmitters. In: Platt D (ed) Funktionsstörungen des Gehirns im Alter. F.K. Schattauer Verlag, Stuttgart/New York, pp 67–81
Carlsson A, Fornstedt B (1991) Possible mechanisms underlying the special vulnerability of dopaminergic neurons. Acta Neurol Scand Suppl 136:16–18. https://doi.org/10.1111/j.1600-0404.1991.tb05014.x
Article CAS PubMed Google Scholar
Carstam R, Brinck C, Fornstedt B, Rorsman H, Rosengren E (1990) 5-S-cysteinyldopac in human urine. Acta Derm Venereol 70(5):373–377 (PMID: 1980968)
Article CAS PubMed Google Scholar
Ceballos I, Lafon M, Javoy-Agid F, Hirsch E, Sinet PM, Agid Y (1990) Superoxide dismutase and Parkinson’s disease. Lancet 335:1035–1036
Article CAS PubMed Google Scholar
Cohen G (1983) The pathobiology of Parkinson’s disease: Biochemical aspects of dopamine neuron senescence. J Neural Transm 19(suppl):89–103
Cohen G, Spina MB (1989) Deprenyl supresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 26:689–690
Article CAS PubMed Google Scholar
Dexter D, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1986) Lipid peroxidation as cause of nigral cell death in Parkinson’s disease. Lancet 2:639–640
Article CAS PubMed Google Scholar
Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Mardsen CD (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 2:1219–1220
Article CAS PubMed Google Scholar
Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Mardsen CD (1989) Increased nigral iron content and alterations in other metal ioans occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836
Article CAS PubMed Google Scholar
Dexter DT, Carayon A, Vidailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Mardsen CD (1990) Decreased ferritin levels in brain in Parkinson’s disease. J Neurochem 55:16–20
Article CAS PubMed Google Scholar
Ehringer H, Hornykiewicz O (1960) Verteilung von noradrenalin und dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erktankungen des Extrapyramidalen Systems. Klin Wschr 38:1236–1239
Article CAS PubMed Google Scholar
Engelen M, Vanna R, Bellei C, Zucca FA, Wakamatsu K, Monzani E, Ito S, Casella L, Zecca L (2012) Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanic structure. PLoS One 7(11):e48490. https://doi.org/10.1371/journal.pone.0048490
Article ADS CAS PubMed PubMed Central Google Scholar
Engelender S, Isacson O (2017) The threshold theory for Parkinson’s disease. Trends Neurosci 40(1):4–14. https://doi.org/10.1016/j.tins.2016.10.008
Article CAS PubMed Google Scholar
Fasano M, Bergamsco B, Lopiano L (2006) Modifications of the iron-neuromelanin system in Parkinson’s disease. J Neurochem 96(4):909–916
Article CAS PubMed Google Scholar
Fofani G, Obeso JA (2018) A cortical pathogenic theory of Parkinson’s disease. Neuron 99(6):1116–1128. https://doi.org/10.1016/j.neuron.2018.07.028
Fornstedt B, Carlsson A (1989) A marked rise in 5-S-cysteinyl-dopamine levels in guinea-pig striatum following reserpine treatment. J Neural Transm 76(2):155–161. https://doi.org/10.1007/BF01578755
Article CAS PubMed Google Scholar
Fornstedt B, Carlsson A (1991a) Effects of inhibition of monoamine oxidase on the levels of 5-S-cysteinyl adducts of catechols in dopaminergic regions of the brain of the guinea pig. Neuropharmacology 30(5):463–468. https://doi.org/10.1016/0028-3908(91)90007-x
Article CAS PubMed Google Scholar
Fornstedt B, Carlsson A (1991b) Vitamin C deficiency facilitates 5-S-cysteinyldopamine formation in guinea pig striatum. J Neurochem 56(2):407–414. https://doi.org/10.1111/j.1471-4159.1991.tb08166.x
Article CAS PubMed Google Scholar
Fornstedt B, Rosengren E, Carlsson A (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology 25(4):451–454. https://doi.org/10.1016/0028-3908(86)90242-x
Article CAS PubMed Google Scholar
Fornstedt B, Brun A, Rosengren E, Carlsson A (1989) The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm Park Dis Dement Sect 1(4):279–295. https://doi.org/10.1007/BF02263482
Article CAS PubMed Google Scholar
Fornstedt B, Bergh I, Rosengren E, Carlsson A (1990a) An improved HPLC-electrochemical detection method for measuring brain levels of 5-S-cysteinyldopamine, 5-S-cysteinyl-3,4-dihydroxyphenylalanine, and 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid. J Neurochem 54(2):578–586. https://doi.org/10.1111/j.1471-4159.1990.tb01910.x
Article CAS PubMed Google Scholar
Fornstedt B, Pileblad E, Carlsson A (1990b) In vivo autoxidation of dopamine in guinea pig striatum increases with age. J Neurochem 55(2):655–659. https://doi.org/10.1111/j.1471-4159.1990.tb04183.x
Article CAS PubMed Google Scholar
FornstedtWallin B, Bergh I (1995) A sensitive high-performance liquid chromatographic method for the determination 5-S-cysteinyldopamine, of 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid and of 5-S-cysteinyl-3,4-dihydroxyphenylalanine. J Chromatogr B 663:9–14
Goldstein DS (2021) The catecholaldehyde hypothesis for the pathogenesis of catecholaminergic neurodegeneration: what we know and what we do not know. Int J Mol Sci 22:5999. https://doi.org/10.3390/ijms22115999
Article CAS PubMed PubMed Central Google Scholar
Goldstein DS, Sullivan P, Holmes C, Miller GW, Alter S, Strong R, Mash DC, Kopin IJ, Sharabi Y (2013) Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. J Neurochem 126:591–603
Comments (0)