The Evolution of Neuroimaging Technologies to Evaluate Neural Activity Related to Knee Pain and Injury Risk

Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. American J Sports Med. 2014;42(10):2363–70.

Article  Google Scholar 

Lohmander L, Östenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheumatism: Official J Ame College Rheumatol. 2004;50(10):3145–52.

Article  CAS  Google Scholar 

Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athletic Train. 2014;49(6):806–19.

Article  Google Scholar 

Heintjes EM, Berger M, Bierma‐Zeinstra SM, Bernsen RM, Verhaar JA, Koes BW, et al. Exercise therapy for patellofemoral pain syndrome. Cochrane Database of Systematic Reviews. 1996;2010(1).

Smith BE, Selfe J, Thacker D, Hendrick P, Bateman M, Moffatt F, et al. Incidence and prevalence of patellofemoral pain: a systematic review and meta-analysis. PloS one. 2018;13(1):e0190892.

Article  PubMed  PubMed Central  Google Scholar 

Willy RW, Hoglund LT, Barton CJ, Bolgla LA, Scalzitti DA, Logerstedt DS, et al. Patellofemoral pain: clinical practice guidelines linked to the international classification of functioning, disability and health from the academy of orthopaedic physical therapy of the American physical therapy association. J Orthopaedic Sports Phys Therapy. 2019;49(9):CPG1–95.

Article  Google Scholar 

Myer GD, Ford KR, Di Stasi SL, Foss KDB, Micheli LJ, Hewett TE. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? British J Sports Med. 2015;49(2):118–22.

Article  Google Scholar 

Thomas MJ, Wood L, Selfe J, Peat G. Anterior knee pain in younger adults as a precursor to subsequent patellofemoral osteoarthritis: a systematic review. BMC Musculoskeletal Dis. 2010;11(1):1–8.

Article  Google Scholar 

Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Ame J Sports Med. 2007;35(10):1756–69.

Article  Google Scholar 

Cowan SM, Bennell KL, Crossley KM, Hodges PW, McConnell J. Physical therapy alters recruitment of the vasti in patellofemoral pain syndrome. Med Sci Sports Exercise. 2002;34(12):1879–85.

Article  Google Scholar 

Neto T, Sayer T, Theisen D, Mierau A. Functional brain plasticity associated with ACL injury: a scoping review of current evidence. Neural Plast. 2019;2019:3480512. https://doi.org/10.1155/2019/3480512.

Diekfuss JA, Grooms DR, Nissen KS, Coghill RC, Bonnette S, Barber Foss KD, et al. Does central nervous system dysfunction underlie patellofemoral pain in young females? Examining brain functional connectivity in association with patient‐reported outcomes. Journal of Orthopaedic Research®. 2022;40(5):1083-96.

López-Solà M, Pujol J, Monfort J, Deus J, Blanco-Hinojo L, Harrison BJ, et al. The neurologic pain signature responds to nonsteroidal anti-inflammatory treatment vs placebo in knee osteoarthritis. Pain Reports. 2022;7(2).

Mansfield CJ, Culiver A, Briggs M, Schmitt LC, Grooms DR, Onate J. The effects of knee osteoarthritis on neural activity during a motor task: a scoping systematic review. Gait & Posture. 2022.

Klug M, Gramann K. Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments. Eur J Neurosci. 2021;54(12):8406–20.

Article  PubMed  Google Scholar 

Newton JM, Dong Y, Hidler J, Plummer-D’Amato P, Marehbian J, Albistegui-DuBois RM, et al. Reliable assessment of lower limb motor representations with fMRI: use of a novel MR compatible device for real-time monitoring of ankle, knee and hip torques. Neuroimage. 2008;43(1):136–46.

Article  PubMed  Google Scholar 

Corbett DB, Simon CB, Manini TM, George SZ, Riley JL III, Fillingim RB. Movement-evoked pain: transforming the way we understand and measure pain. Pain. 2019;160(4):757.

Article  PubMed  PubMed Central  Google Scholar 

Chaput M, Onate JA, Simon JE, Criss CR, Jamison S, McNally M, et al. Visual cognition associated with knee proprioception, time to stability, and sensory integration neural activity after ACL reconstruction. J Orthopaedic Res®. 2022;40(1):95–104.

Article  Google Scholar 

Criss CR, Onate JA, Grooms DR. Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: a task-based functional connectivity analysis. Neuroscience Lett. 2020;730: 134985.

Article  CAS  Google Scholar 

•• Grooms DR, Diekfuss JA, Criss CR, Anand M, Slutsky-Ganesh AB, DiCesare CA, et al. Preliminary brain-behavioral neural correlates of anterior cruciate ligament injury risk landing biomechanics using a novel bilateral leg press neuroimaging paradigm. Plos one. 2022;17(8): e0272578. This citation is the first study to link altered neural activation measured with fMRI to injury risk landing mechanics collected using standardised biomechanical tests.

Grooms DR, Diekfuss JA, Slutsky-Ganesh AB, DiCesare CA, Bonnette S, Riley MA, et al. Preliminary Report on the Train the Brain Project, Part II: Neuroplasticity of Augmented Neuromuscular Training and Improved Injury-Risk Biomechanics. J Athletic Training. 2022;57(9–10):911–20.

Article  Google Scholar 

Diekfuss JA, Grooms DR, Nissen KS, Schneider DK, Foss KDB, Thomas S, et al. Alterations in knee sensorimotor brain functional connectivity contributes to ACL injury in male high-school football players: a prospective neuroimaging analysis. Brazilian J Phys Therapy. 2020;24(5):415–23.

Article  Google Scholar 

Diekfuss JA, Grooms DR, Yuan W, Dudley J, Foss KDB, Thomas S, et al. Does brain functional connectivity contribute to musculoskeletal injury? A preliminary prospective analysis of a neural biomarker of ACL injury risk. J Sci Med Sport. 2019;22(2):169–74.

Article  PubMed  Google Scholar 

•• Grooms DR, Diekfuss JA, Ellis JD, Yuan W, Dudley J, Foss KDB, et al. A novel approach to evaluate brain activation for lower extremity motor control. Journal of Neuroimaging. 2019;29(5):580–8. This citation demonstrates the test-retest reliability of neural activation for knee motor control during fMRI.

Anand M, Diekfuss JA, Bonnette S, Short I, Hurn M, Grooms DR, et al. Validity of an MRI-compatible motion capture system for use with lower extremity neuroimaging paradigms. Int J Sports Phys Therapy. 2020;15(6):936.

Article  Google Scholar 

Grooms DR, Page SJ, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athletic Training. 2015;50(10):1005–10.

Article  Google Scholar 

Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthopaedic Sports Phys Therapy. 2017;47(3):180–9.

Article  Google Scholar 

Slutsky-Ganesh AB, Anand M, Diekfuss JA, Myer GD, Grooms DR. Lower extremity Interlimb coordination associated brain activity in young female athletes: a biomechanically instrumented neuroimaging study. Psychophysiology. 2023;60(4):e14221.

Article  PubMed  Google Scholar 

Anand M, Diekfuss JA, Slutsky-Ganesh AB, Grooms DR, Bonnette S, Foss KDB, et al. Integrated 3D motion analysis with functional magnetic resonance neuroimaging to identify neural correlates of lower extremity movement. J Neurosci Methods. 2021;355:109108.

Article  PubMed  PubMed Central  Google Scholar 

Sugimoto D, Myer GD, Barber Foss KD, Hewett TE. Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: meta-and sub-group analyses. Sports Med. 2014;44:551–62.

Article  PubMed  PubMed Central  Google Scholar 

Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthopaed Sports Phys Therapy. 2015;45(5):381–93.

Article  Google Scholar 

Foss KDB, Slutsky-Ganesh AB, Diekfuss JA, Grooms DR, Simon JE, Schneider DK, et al. Brain activity during experimental knee pain and its relationship with kinesiophobia in patients with patellofemoral pain: a preliminary functional magnetic resonance imaging investigation. J Sport Rehab. 2022;31(5):589–98.

Google Scholar 

Diekfuss JA, Saltman AJ, Grooms DR, Bonnette S, Foss KB, Berz K, et al. Neural correlates of knee motor control for young females with patellofemoral pain. Orthopaedic J Sports Med. 2019;7(3_suppl):2325967119S00012.

Article  Google Scholar 

Diekfuss JA, Grooms DR, Coghill RC, Nissen KS, Saltman AJ, Berz K, et al. Kinesiophobia is related to brain activity for knee motor control in pediatric patients with patellofemoral pain. Orthopaedic J Sports Med. 2020;8(4_suppl3):2325967120S000187.

Article  Google Scholar 

Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci. 2017;40(4):208–18.

Article  PubMed  CAS  Google Scholar 

Ismail LE, Karwowski W. Applications of EEG indices for the quantification of human cognitive performance: a systematic review and bibliometric analysis. Plos one. 2020;15(12):e0242857.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hussain I, Hossain MA, Jany R, Bari MA, Uddin M, Kamal ARM, et al. Quantitative evaluation of EEG-biomarkers for prediction of sleep stages. Sensors. 2022;22(8):3079.

Article  PubMed  PubMed Central  Google Scholar 

Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.

Article  PubMed  CAS  Google Scholar 

Gutmann B, Mierau A, Hülsdünker T, Hildebrand C, Przyklenk A, Hollmann W, et al. Effects of physical exercise on individual resting state EEG alpha peak frequency. Neural Plasticity. 2015;2015.

Baumeister J, Reinecke K, Weiss M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: an EEG study. Scandinavian J Med Sci Sports. 2008;18(4):473–84.

Article  CAS  Google Scholar 

Baumeister J, Reinecke K, Schubert M, Weiss M. Altered electrocortical brain activity after ACL reconstruction during force control. J Ortho Res. 2011;29(9):1383–9.

Article  Google Scholar 

•• Sherman DA, Baumeister J, Stock MS, Murray AM, Bazett-Jones DM, Norte GE. Weaker quadriceps corticomuscular coherence in individuals after ACL reconstruction during force tracing. Med Sci Sports Exerc. 2023;55(4):625-32. This work is very important for the current topic because, in our opinion, it is the most representative example of the source localized EEG methodology that is reccomended in the latter section of this review.

Mima T, Hallett M. Corticomuscular coherence: a review. J Clin Neurophysiol. 1999;16(6):501.

Article  PubMed  CAS  Google Scholar 

Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clinical Neurophysiol. 2005;116(10):2266–301.

Article  CAS  Google Scholar 

Webber CL, Marwan N. Recurrence quantification analysis. Theory and Best Practices. 2015:426.

Bonnette S, Diekfuss JA, Grooms DR, Kiefer AW, Riley MA, Riehm C, et al. Electrocortical dynamics differentiate athletes exhibiting low-and high-ACL injury risk biomechanics. Psychophysiology. 2020;57(4):e13530.

Article  PubMed  PubMed Central  Google Scholar 

Ebrahimi N, Rojhani-Shirazi Z, Yoosefinejad AK, Nami M. The effects of virtual reality training on clinical indices and brain mapping of women with patellofemoral pain: a randomized clinical trial. BMC Musculoskeletal Disorders. 2021;22(1):1–10.

Article  Google Scholar 

Rocha HA, Marks J, Woods AJ, Staud R, Sibille K, Keil A. Re-test reliability and internal consistency of EEG alpha-band oscillations in older adults with chronic knee pain. Clin Neurophysiol. 2020;131(11):2630–40.

Article  PubMed  PubMed Central  Google Scholar 

Michel CM, He B. EEG source localization. Handbook Clin Neuro. 2019;160:85–101.

Comments (0)

No login
gif