Rosen, H., Drezner, M. Clinical manifestations, diagnosis, and evaluation of osteoporosis in postmenopausal women-UpToDate [Internet]. 2018.
Compston, J., Bowring, C., Cooper, A., et al. (2013). Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National osteoporosis guideline group (NOGG) update 2013. Maturitas, 75, 392–396.
Cosman, F., de Beur, S. J., LeBoff, M. S., et al. (2014). Clinician’s guide to prevention and treatment of osteoporosis. Osteoporosis International, 25, 2359–2381.
Article PubMed PubMed Central Google Scholar
Denosumab (Prolia): Treatment to increase bone mass in men with osteoporosis at high risk for fracture; or who have failed or are intolerant to other available osteoporosis therapy [Internet]. Ottawa (ON): Canadian agency for drugs and technologies in health; 2015 Oct.
Tsai, J., Burnett-Bowie, S., Lee, H., et al. (2017). Relationship between bone turnover and density with teriparatide, denosumab or both in women in the DATA study. Bone, 95, 20–25.
Zaheer, S., LeBoff, M., & Lewiecki, E. M. (2015). Denosumab for the treatment of osteoporosis. Expert Opinion on Drug Metabolism & Toxicology, 11, 461–470.
Raisz, L. G. (1988). Hormonal regulation of bone growth and remodelling. Ciba Foundation symposium., 136, 226–238.
Mohan, S., & Baylink, D. J. (1996). Insulin-like growth factor system components and the coupling of bone formation to resorption. Hormone research., 45(Suppl 1), 59–62.
Tang, Y., Wu, X., Lei, W., Pang, L., Wan, C., & Shi, Z. (2009). TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Medicine, 15, 757–765.
Article PubMed PubMed Central Google Scholar
Xian, L., Wu, X., Pang, L., Lou, M., Rosen, C. J., Qiu, T., Crane, J., Frassica, F., Zhang, L., Rodriguez, J. P., Xiaofeng, J., Shoshana, Y., Shouhong, X., Argiris, E., Mei, W., & Xu, C. (2012). Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nature Medicine, 18, 1095–1101.
Article PubMed PubMed Central Google Scholar
Falany, M. L., Thames, A. M., 3rd., McDonald, J. M., Blair, H. C., McKenna, M. A., Moore, R. E., Young, M. K., & Williams, J. P. (2001). Osteoclasts secrete the chemotactic cytokine mim-1. Biochemical and Biophysical Research Communications, 281(1), 180–185.
Martin, T., Gooi, J. H., & Sims, N. A. (2009). Molecular mechanisms in coupling of bone formation to resorption. Critical Reviews in Eukaryotic Gene Expression, 19, 73–88.
Andersen, T. L., Sondergaard, T. E., Skorzynska, K. E., Dagnaes-Hansen, F., Plesner, T. L., Hauge, E. M., Plesner, T., & Delaisse, J. M. (2009). A physical mechanism for coupling bone resorption and formation in adult human bone. American Journal of Pathology, 174, 239–247.
Article PubMed PubMed Central Google Scholar
Gothlin, G., & Ericsson, J. L. (1976). The osteoclast: Review of ultrastructure, origin, and structure-function relationship. Clinical orthopaedics and related research., 120, 201–231.
Walker, D. G. (1973). Osteopetrosis cured by temporary parabiosis. Science, 180, 875.
Kahn, A. J., & Simmons, D. J. (1975). Investigation of cell lineage in bone using a chimaera of chick and quial embryonic tissue. Nature, 258, 325–327.
Walker, D. G. (1975). Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science, 190, 784–785.
Walker, D. G. (1975). Spleen cells transmit osteopetrosis in mice. Science, 190, 785–787.
Scheven, B. A., Visser, J. W., & Nijweide, P. J. (1986). In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature, 321, 79–81.
Kondo, M., Wagers, A. J., Manz, M. G., Prohaska, S. S., Scherer, D. C., Beilhack, G. F., Shizuru, J. A., & Weissman, I. L. (2003). Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annual Review of Immunology, 21, 759–806.
Metcalf, D. (2008). Hematopoietic cytokines. Blood, 111(2), 485–491.
Article PubMed PubMed Central Google Scholar
Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N., & Suda, T. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/ANKL. Proc Natl Acad Sci U S A., 95, 3597–3602.
Article PubMed PubMed Central Google Scholar
Matsuzaki, K., Udagawa, N., Takahashi, N., Yamaguchi, K., Yasuda, H., Shima, N., Morinaga, T., Toyama, Y., Yabe, Y., Higashio, K., & Suda, T. (1998). Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochemical and Biophysical Research Communications, 246, 199–204.
Metcalf, D. (1970). Studies on colony formation in vitro by mouse bone marrow cells. II. Action of colony stimulating factor. Journal of Cellular Physiology, 76, 89–99.
Xaus, J., Comalada, M., Valledor, A. F., Cardó, M., Herrero, C., Soler, C., Lloberas, J., & Celada, A. (2001). Molecular mechanisms involved in macrophage survival, proliferation, activation or apoptosis. Immunobiology, 204, 543–550.
Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., … Boyle, W. J. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93, 165–176.
Anderson, D. M., Maraskovsky, E., Billingsley, W. L., Dougall, W. C., Tometsko, M. E., Roux, E. R., Teepe, M. C., DuBose, R. F., Cosman, D., & Galibert, L. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 390, 175–179.
Bucay, N., Sarosi, I., Dunstan, C. R., Morony, S., Tarpley, J., Capparelli, C., Scully, S., Tan, H. L., Xu, W., Lacey, D. L., Boyle, W. J., & Simonet, W. S. (1998). osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes & Development, 12, 1260–1268.
Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Lüthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H. L., Trail, G., Sullivan, J., Davy, E., Bucay, N., … Boyle, W. J. (1997). Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 89, 309–319.
Lum, L., Wong, B. R., Josien, R., Becherer, J. D., Erdjument-Bromage, H., Schlöndorff, J., Tempst, P., Choi, Y., & Blobel, C. P. (1999). Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzymelike protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. Journal of Biological Chemistry, 274, 13613–13618.
Wong, B. R., Besser, D., Kim, N., Arron, J. R., Vologodskaia, M., Hanafusa, H., & Choi, Y. (1999). TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Molecular Cell, 4, 1041–1049.
Amgen, Inc. Prolia (denosumab) prescribing information. 2010 updated 2014.
Bekker, P., Holloway, D., Rasmussen, A., et al. (2004). A single-dose placebo-controlled study of AMG 162, a fully monoclonal antibody to RANKL, in postmenopausal women. Journal of Bone and Mineral Research, 19(7), 1059–1066.
Sutjandra, L., Rodriguez, R., Doshi, S., et al. (2011). Population pharmacokinetic metaanalysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clinical Pharmacokinetics, 50(12), 793–807.
Block, G., Bone, H., Fang, L., et al. (2012). A single-dose study of denosumab in patients with various degrees of renal impairment. Journal of Bone and Mineral Research, 27(7), 1471–1479.
Miller, P., Bolognese, M., Lewiecki, E., et al. (2008). Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: A randomized blinded phase 2 clinical trial. Bone, 43(2), 222–229.
Cummings, S., San Martin, J., Mcclung, M., et al. (2009). Denosumab for prevention of fractures in postmenpausal women with osteoporosis. New England Journal of Medicine, 361(8), 756–765.
Papapoulos, S., Lippuner, K., Roux, C., Lin, C. J., Kendler, D. L., Lewiecki, E. M., Brandi, M. L., Czerwiński, E., Franek, E., Lakatos, P., Mautalen, C., Minisola, S., Reginster, J. Y., Jensen, S., Daizadeh, N. S., Wang, A., Gavin, M., Libanati, C., Wagman, R. B., & Bone, H. G. (2015). The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporosis International, 26(12), 2773–2783.
Article PubMed PubMed Central Google Scholar
Brown, J., Roux, C., Torring, O., et al. (2013). Discontinuation of denosumab and associated fracture incidence: analysis from the fracture reduction evaluation of denosumab in osteoporosis every 6 months (FREEDOM) trial. Journal of Bone and Mineral Research, 28(4), 746–752.
Brown, J., Reid, I., Wagon, R., et al. (2014). Effects of up to 5 years of denosumab treatment on bone histology and histomorphometry: the FREEDOM study extension. Journal of Bone and Mineral Research, 29(9), 2051–2056.
Orwoll, E., Teglbjærg, C., Langdahl, B., et al. (2012). A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. Journal of Clinical Endocrinology and Metabolism, 97(9), 3161–3169.
Comments (0)