Mesenchymal Stem Cells and Osteoblast Function: Investigating the Involvement of circGLIS2

Ensrud, K.E. and Crandall, C.J., Osteoporosis, Ann. Intern. Med., 2017, vol. 167, no. 3, pp. ITC17—ITC32.

Article  PubMed  Google Scholar 

Cotts, K.G. and Cifu, A.S., Treatment of osteoporosis, JAMA, 2018, vol. 319, no. 10, pp. 1040—1041.

Article  PubMed  Google Scholar 

Brown, C., Osteoporosis: staying strong, Nature, 2017, vol. 550, no. 7674, pp. S15—S17.

Article  CAS  PubMed  Google Scholar 

Arceo-Mendoza, R.M. and Camacho, P.M., Postmenopausal osteoporosis: latest guidelines, Endocrinol. Metab. Clin. North Am., 2021, vol. 50, no. 2, pp. 167—178.

Article  PubMed  Google Scholar 

Chen, Y.S., Lian, W.S., Kuo, C.W., et al., Epigenetic regulation of skeletal tissue integrity and osteoporosis development, Int. J. Mol. Sci., 2020, vol. 21, no. 14.

Yang, Y., Yujiao, W., Fang, W., et al., The roles of miRNA, lncRNA and circRNA in the development of osteoporosis, Biol. Res., 2020, vol. 53, no. 1, p. 40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, T.L., Shen, H., Liu, A., et al., A road map for understanding molecular and genetic determinants of osteoporosis, Nat. Rev. Endocrinol., 2020, vol. 16, no. 2, pp. 91—103.

Article  PubMed  Google Scholar 

Gao, M., Zhang, Z., Sun, J., Li, B., and Li, Y., The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis, Front. Endocrinol. (Lausanne), 2022, vol. 13, р. 945310.

Article  Google Scholar 

Luo, Y., Qiu, G., Liu, Y., et al., Circular RNAs in osteoporosis: expression, functions and roles, Cell Death Discov., 2021, vol. 7, no. 1, p. 231.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen, J., Guan, Z., Yu, B., Guo, J., Shi, Y., and Hu, L., Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis, Int. J. Biochem. Cell. Biol., 2020, vol. 122, р. 105719.

Yu, L. and Liu, Y., circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis, Biochem. Biophys. Res. Commun., 2019, vol. 516, no. 2, pp. 546—550.

Article  CAS  PubMed  Google Scholar 

Miller, P.D., Management of severe osteoporosis, Expert Opin. Pharmacother., 2016, vol. 17, no. 4, pp. 473—488.

Article  CAS  PubMed  Google Scholar 

Reid, I.R. A broader strategy for osteoporosis interventions, Nat. Rev. Endocrinol., 2020, vol. 16, no. 6, pp. 333—339.

Article  PubMed  Google Scholar 

Chen, W., Zhang, B., and Chang, X., Emerging roles of circular RNAs in osteoporosis, J. Cell Mol. Med., 2021, vol. 25, no. 19, pp. 9089—9101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, R., Wang, Y., Zhu, L., Liu, Y., and Li, W., Epigenetic regulation in mesenchymal stem cell aging and differentiation and osteoporosis, Stem Cells Int., 2020, vol. 2020, р. 8836258.

Chen, X., Ouyang, Z., Shen, Y., et al., CircRNA_28313/miR‑195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice, RNA Biol., 2019, vol. 16, no. 9, pp. 1249—1262.

Article  PubMed  PubMed Central  Google Scholar 

He, T., Liu, W., Cao, L., et al., CircRNAs and lncRNAs in osteoporosis, Differentiation, 2020, vol. 116, pp. 16—25.

Article  CAS  PubMed  Google Scholar 

Chen, J., Yang, R., Liu, R., et al., Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-kappaB pathway, Cell Death Dis., 2020, vol. 11, no. 9, p. 788.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conidi, A., Cazzola, S., Beets, K., et al., Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFbeta/BMP signaling in vivo, Cytokine Growth Factor Rev., 2011, vol. 22, nos. 5—6, pp. 287—300.

Article  CAS  PubMed  Google Scholar 

Eivers, E., Demagny, H., and De Robertis, E.M., Integration of BMP and Wnt signaling via vertebrate Smad1/5/8 and Drosophila Mad, Cytokine Growth Factor Rev., 2009, vol. 20, nos. 5—6, pp. 357—365.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai, J., Li, Y., Zhou, H., Chen, J., Chen, M., and Xiao, Z., Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling, Int. J. Biol. Sci., 2013, vol. 9, no. 10, pp. 1089—1098.

Article  PubMed  PubMed Central  Google Scholar 

Nahar-Gohad, P., Gohad, N., Tsai, C.C., Bordia, R., and Vyavahare, N., Rat aortic smooth muscle cells cultured on hydroxyapatite differentiate into osteoblast-like cells via BMP-2-SMAD-5 pathway, Calcif. Tissue Int., 2015, vol. 96, no. 4, pp. 359—369.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Q., Shen, P., Zhang, B., Chen, Y., and Zheng, C., Circ_0062582 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro by elevating SMAD5 expression through sponging miR-197-3p, Cells Tissues Organs, 2022, vol. 10, р. 1159. https://doi.org/10.1159/000525703

Article  Google Scholar 

Park, S.B., Park, S.H., Kim, N.H., and Chung, C.K., BMP-2 induced early bone formation in spine fusion using rat ovariectomy osteoporosis model, Spine J., 2013, vol. 13, no. 10, pp. 1273—1280.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif