Miller, K.D., Ortiz, A.P., Pinheiro, P.S., et al., Cancer statistics for the US Hispanic/Latino population, 2021, CA: Cancer J. Clin., 2021, vol. 71, no. 6, pp. 466—487.
Sørlie, T., Perou, C.M., Tibshirani, R., et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 19, pp. 10869—10874.
Article PubMed PubMed Central Google Scholar
Hu, Z., Fan, C., Oh, D.S., et al., The molecular portraits of breast tumors are conserved across microarray platforms, BMC Genomics, 2006, vol. 7, no. 1, pp. 1—12.
Parker, J.S., Mullins, M., Cheang, M.C., et al., Supervised risk predictor of breast cancer based on intrinsic subtypes, J. Clin. Oncol., 2009, vol. 27, no. 8, p. 1160.
Article PubMed PubMed Central Google Scholar
Holm, J., Eriksson, L., Ploner, A., et al., Assessment of breast cancer risk factors reveals subtype heterogeneity subtype heterogeneity for breast cancer risk factors, Cancer Res., 2017, vol. 77, no. 13, pp. 3708—3717.
Article CAS PubMed Google Scholar
Dieci, M.V., Orvieto, E., Dominici, M., et al., Rare breast cancer subtypes: histological, molecular, and clinical peculiarities, Oncologist, 2014, vol. 19, no. 8, pp. 805—813.
Article PubMed PubMed Central Google Scholar
Van’t Veer, L.J., Dai, H., Van De Vijver, M.J., et al., Gene expression profiling predicts clinical outcome of breast cancer, Nature, 2002, vol. 415, no. 6871, pp. 530—536.
Wang, Y., Klijn, J.G., Zhang, Y., et al., Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer, Lancet, 2005, vol. 365, no. 9460, pp. 671—679.
Article CAS PubMed Google Scholar
Van De Vijver, M.J., He, Y.D., Van’t Veer, L.J., et al., A gene-expression signature as a predictor of survival in breast cancer, N. Eng. J. Med., 2002, vol. 347, no. 25, pp. 1999—2009.
Lin, P., He, R.Q., Dang, Y.W., et al., An autophagy-related gene expression signature for survival prediction in multiple cohorts of hepatocellular carcinoma patients, Oncotarget, 2018, vol. 9, no. 25, p. 17368.
Article PubMed PubMed Central Google Scholar
Ma, W., Zhao, F., Yu, X., et al., Immune-related lncRNAs as predictors of survival in breast cancer: a prognostic signature, J. Transl. Med., 2020, vol. 18, no. 1, pp. 1—13.
Xu, M., Li, Y., Li, W., et al., Immune and stroma related genes in breast cancer: a comprehensive analysis of tumor microenvironment based on the cancer genome atlas (TCGA) database, Front. Med., 2020, vol. 7, no. 64.
Montazeri, M., Montazeri, M., Montazeri, M., and Beigzadeh, A., Machine learning models in breast cancer survival prediction, Tech. Health Care, 2016, vol. 24, no. 1, pp. 31—42.
Wu, T., Sultan, L.R., Tian, J., et al., Machine learning for diagnostic ultrasound of triple-negative breast cancer, Breast Cancer Res. Treat., 2019, vol. 173, no. 2, pp. 365—373.
Article CAS PubMed Google Scholar
Turkki, R., Byckhov, D., Lundin, M., et al., Breast cancer outcome prediction with tumour tissue images and machine learning, Breast Cancer Res. Treat., 2019, vol. 177, no. 1, pp. 41—52.
Article PubMed PubMed Central Google Scholar
Chen, Y., Li, Z.Y., Zhou, G.Z., et al., An immune-related gene prognostic index for head and neck squamous cell carcinoma IRGPI as an immune-related prognostic biomarker in HNSCC, Clin. Cancer Res., 2021, vol. 27, no. 1, pp. 330—341.
Mao, W., Wang, K., Xu, B., et al., ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma, Mol. Cancer, 2021, vol. 20, no. 1, pp. 1—7.
Cortes, C., and Vapnik, V., Support-vector networks, Mach. Learn., 1995, vol. 20, no. 3, pp. 273—297.
Nurdiawan, O., Kurnia, D., Solihudin, D., et al., Comparison of the K-Nearest Neighbor algorithm and the decision tree on moisture classification, IOP Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1088, no. 1, pp. 012—031.
Saritas, M.M., and Yasar, A., Performance analysis of ANN and Naive Bayes classification algorithm for data classification, Int. J. Intell. Syst. App. Eng., 2019, vol. 7, no. 2, pp. 88—91.
Brijain, M., Patel, R., Kushik, M., et al., A survey on decision tree algorithm for classification, Int. J. Eng., Dev. Res., 2014, vol. 2, no. 1, pp. 1—5.
Biau, G., and Scornet, E., A random forest guided tour, Test, 2016, vol. 25, no. 2, pp. 197—227.
Jakulin, A., Machine learning based on attribute interactions, Doctoral Dissertation, Univ. Ljubljani, 2005.
Lin, D. and Tang, X., Conditional infomax learning: an integrated framework for feature extraction and fusion, Comp. Vision-ECCV 2006, Ser. Lec. Notes Comp. Sci., 2006, vol. 3951, pp. 68—82.
Yang, H. and Moody, J., Feature selection based on joint mutual information, Proceedings of International ICSC Symposium on Advances in Intelligent Data Analysis, 1999, pp. 22—25.
Peng, H., Long, F., and Ding, C., Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on Pattern Analysis and Machine International, 2005, pp. 1226—1238.
Battiti, R., Using mutual information for selecting features in supervised neural net learning, IEEE Trans. Neural Networks, 1994, vol. 5, no. 4, pp. 537—550.
Article CAS PubMed Google Scholar
Lewis, D.D., Feature selection and feature extraction for text categorization, Proceedings of Speech and Natural Language Workshop, Morgan Kaufmann, 1992, pp. 212—217.
Robinson, M.D., McCarthy, D.J., and Smyth, G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 2010, vol. 26, no. 1, pp. 139—140.
Article CAS PubMed Google Scholar
Kannan, S.S. and Ramaraj, N., A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm, Knowl.-Based Syst., 2010, vol. 23, no. 6, pp. 580—585.
Franz, M., Rodriguez, H., Lopes, C., et al., GeneMANIA update 2018, Nucleic Acids Res., 2018, vol. 46, no. W1, pp. W60—W64.
Article CAS PubMed PubMed Central Google Scholar
Liu, N., Zhou, Y., and Lee, J.J., IPDfromKM: reconstruct individual patient data from published Kaplan—Meier survival curves, BMC Med. Res. Methodol., 2021, vol. 21, no. 1, pp. 1—22.
Article CAS PubMed PubMed Central Google Scholar
Consortium, G.O., The gene ontology resource: 20 years and still going strong, Nucleic Acids Res., 2019, vol. 47, no. D1, pp. D330—D338.
Montojo, J., Zuberi, K., Rodriguez, H., et al., GeneMANIA cytoscape plugin: fast gene function predictions on the desktop, Bioinformatic, 2010, vol. 26, no. 22, pp. 2927—2928.
Chatr-Aryamontri, A., Oughtred, R., Boucher, L., et al., The BioGRID interaction database: 2017 update, Nucleic Acids Res., 2017, vol. 45, no. D1, pp. D369—D379.
Article CAS PubMed Google Scholar
Barrett, T., Troup, D.B., Wilhite, S.E., et al., NCBI GEO: archive for high-throughput functional genomic data, Nucleic Acids Res., 2009, vol. 37, suppl. 1, pp. D885—D890.
Article CAS PubMed Google Scholar
Brown, K.R. and Jurisica, I., Online predicted human interaction database, Bioinformatics, 2005, vol. 21, no. 9, pp. 2076—2082.
Article CAS PubMed Google Scholar
Ge, S.X., Jung, D., and Yao, R., ShinyGO: a graphical gene-set enrichment tool for animals and plants, Bioinformatics, 2020, vol. 36, no. 8, pp. 2628—2629.
Article CAS PubMed Google Scholar
Bhowmick, S.S., Bhattacharjee, D., and Rato, L., Integrated analysis of the miRNA—mRNA next-generation sequencing data for finding their associations in different cancer types, Comput. Biol. Chem., 2020, vol. 84, pp. 107—152.
Bhowmick, S.S., Bhattacharjee, D., and Rato, L., In silico markers: an evolutionary and statistical approach to select informative genes of human breast cancer subtypes, Genes Genomics, 2019, vol. 41, pp. 1371—1382.
Comments (0)