Genome-Wide Identification and Characterization of the Hsp70/110 Genes in Two Polychaetes, Capitella teleta and Owenia fusiformis

Lindquist, S. and Craig, E.A., The heat-shock proteins, Annu. Rev. Genet., 1988, vol. 22, no. 1, pp. 631—677.

Article  CAS  PubMed  Google Scholar 

Tower, J., Heat shock proteins and Drosophila aging, Exp. Gerontol., 2011, vol. 46, no. 5, pp. 355—362.

Article  CAS  PubMed  Google Scholar 

Cha, I.S., Kwon, J., Park, S.B., et al., Heat shock protein profiles on the protein and gene expression levels in olive flounder kidney infected with Streptococcus parauberis, Fish Shellfish Immunol., 2013, vol. 34, no. 6, pp. 1455—1462.

Article  CAS  PubMed  Google Scholar 

Alexzander, A.A.A. and Punit, K., Heat Shock Proteins in Veterinary Medicine and Sciences, Berlin: Springer-Verlag, 2017, pp. 247—274.

Google Scholar 

Sørensen, J.G., Kristensen, T.N., and Loeschcke, V., The evolutionary and ecological role of heat shock proteins, Ecol. Lett., 2003, vol. 6, no. 11, pp. 1025—1037.

Article  Google Scholar 

Li, Z. and Srivastava, P., Heat-shock proteins, Curr. Protoc. Immunol., 2003, vol. 58, no. 1, pp. A. 1T. 1—A. 1T. 6.

Dragovic, Z., Broadley, S.A., Shomura, Y., et al., Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s, EMBO J., 2006, vol. 25, no. 11, pp. 2519—2528.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, L., Yuan, Z., Yu, S., et al., Genome-wide identification of HSP70/110 genes in sea cucumber Apostichopus japonicus and comparative analysis of their involvement in aestivation, Comp. Biochem. Physiol.: D‑Genomics Proteomics, 2018, vol. 28, pp. 162—171.

CAS  Google Scholar 

Hu, B., Li, M., Yu, X., et al., Diverse expression regulation of Hsp70 genes in scallops after exposure to toxic Alexandrium dinoflagellates, Chemosphere, 2019, vol. 234, pp. 62—69.

Article  CAS  PubMed  Google Scholar 

Liu, T., Han, Y., Liu, Y., et al., Genome wide identification and analysis of heat-shock proteins 70/110 to reveal their potential functions in Chinese soft-shelled turtle Pelodiscus sinensis, Ecol. Evol., 2019, vol. 9, no. 12, pp. 6968—6985.

Article  PubMed  PubMed Central  Google Scholar 

Jin, S., Deng, Z., Xu, S., et al., Genome-wide identification and low-salinity stress analysis of the Hsp70 gene family in swimming crab (Portunus trituberculatus), Int. J. Biol. Macromol., 2022, vol. 208, pp. 126—135.

Article  CAS  PubMed  Google Scholar 

Dean, H.K., The use of polychaetes (Annelida) as indicator species of marine pollution: a review, Rev. Biol. Trop., 2008, vol. 56, no. 4, pp. 11—38.

Google Scholar 

Jayachandran, P., Nandan, S.B., Jima, M., et al., Ecology and Biodiversity of Benthos, Amsterdam: Elsevier, 2022. p. 337—362.

Google Scholar 

Borja, A., Franco, J., and Pérez, V., A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments, Mar. Pollut. Bull., 2000, vol. 40, no. 12, pp. 1100—1114.

Article  CAS  Google Scholar 

Blake, J.A., Grassle, J.P., and Eckelbarger, K.J., Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records, Zoosymposia, 2009, vol. 2, pp. 25—53.

Article  Google Scholar 

Livi, S., Tomassetti, P., Vani, D., and Marino, G., Genetic evidence of multiple phyletic lineages of Capitella capitata (Fabricius 1780) complex in the Mediterranean Region, J. Mediterr. Ecol., 2017, vol. 15, pp. 5—11.

Google Scholar 

Li, Q., Li, Y., Wang, Y., et al., Taxonomy and regeneration of a newly recorded Polychaete Capitella teleta (Annelida, Capitellidae) in the coastal water of Shandong, China, J. Oceanol. Limnol., 2022, vol. 40, no. 1, pp. 309—321.

Article  Google Scholar 

Ford, E., and Hutchings, P., An analysis of morphological characters of Owenia useful to distinguish species: description of three new species of Owenia (Oweniidae: Polychaeta) from Australian waters, Mar. Ecol., 2005, vol. 26, pp. 181—196.

Article  Google Scholar 

Chen, C., Chen, H., Zhang, Y., et al., TBtools: an integrative toolkit developed for interactive analyses of big biological data, Mol. Plant, 2020, vol. 13, no. 8, pp. 1194—1202.

Article  CAS  PubMed  Google Scholar 

Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772—780.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen, L.T., Schmidt, H.A., von Haeseler, A., et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 2015, vol. 32, no. 1, pp. 268—274.

Article  CAS  PubMed  Google Scholar 

Letunic, I. and Bork, P., Interactive Tree Of Life (iTOL) v4: recent updates and new developments, Nucleic Acids Res., 2019, vol. 47, no. W1, pp. W256—W259.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martín-Zamora, F., Liang, Y., Guynes, K., et al., Annelid functional genomics reveal the origins of bilaterian life cycles, Nature, 2023. https://doi.org/10.1038/s41586-022-05636-7

R Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing, 2021. https://www.R-project.org.

Ma, F. and Luo, L., Genome-wide identification of Hsp70/110 genes in rainbow trout and their regulated expression in response to heat stress, Peer J., 2020, vol. 8, р. e10022.

Article  PubMed  PubMed Central  Google Scholar 

Park, J.C., Kim, D.H., Lee, Y., et al., Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: potential application in molecular ecotoxicology, Comp. Biochem. Physiol.: D-Genomics Proteomics, 2020, vol. 36, р. 100749.

Gao, L., Yuan, Z., Li, Y., and Ma, Z., Genome-wide comparative analysis of DNAJ genes and their co-expression patterns with HSP70s in aestivation of the sea cucumber Apostichopus japonicas, Funct. Integr. Genomics, 2022, vol. 22, no. 3, pp. 317—330.

Article  CAS  PubMed  Google Scholar 

Roh, H., and Kim, D.H., Identification, classification and functional characterization of HSP70s in rainbow trout (Oncorhynchus mykiss) through multiomics approaches, Fish Shellfish Immunol., 2022, vol. 121, pp. 205—214.

Article  CAS  PubMed  Google Scholar 

Song, L., Li, C., Xie, Y., et al., Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection, Fish Shellfish Immunol., 2016, vol. 49, pp. 154—162.

Article  CAS  PubMed  Google Scholar 

Sun, Y., Wen, H., Tian, Y., et al., HSP90 and HSP70 families in Lateolabrax maculatus: genome-wide identification, molecular characterization, and expression profiles in response to various environmental stressors, Front. Physiol., 2021, vol. 12, р. 784803.

Article  PubMed  PubMed Central  Google Scholar 

Zhou, J., Wang, W.N., He, W.Y., et al., Expression of HSP60 and HSP70 in white shrimp, Litopenaeus vannamei in response to bacterial challenge, J. Invertebr. Pathol., 2010, vol. 103, no. 3, pp. 170—178.

Article  CAS  PubMed  Google Scholar 

Magadum, S., Banerjee, U., Murugan, P., et al., Gene duplication as a major force in evolution, J. Genet., 2013, vol. 92, no. 1, pp. 155—161.

Article  PubMed  Google Scholar 

Maere, S., De Bodt, S., Raes, J., et al., Modeling gene and genome duplications in eukaryotes, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 15, pp. 5454—5459.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan, D. and Zhang, L., Tandemly arrayed genes in vertebrate genomes, Comp. Funct. Genomics, 2008, vol. 2008, р. 545269.

Article  PubMed  PubMed Central  Google Scholar 

Kimura, M., The neutral theory of molecular evolution, Sci. Am., 1979, vol. 241, no. 5, pp. 98—129.

Article  CAS  PubMed  Google Scholar 

Iryani, M.T.M., MacRae, T.H., Panchakshari, S., et al., Knockdown of heat shock protein 70 (Hsp70) by RNAi reduces the tolerance of Artemia franciscana nauplii to heat and bacterial infection, J. Exp. Mar. Biol. Ecol., 2017, vol. 487, pp. 106—112.

Article  CAS  Google Scholar 

Aishi, K., Sinnasamy, S., MacRae, T.H., et al., Hsp70 knockdown reduced the tolerance of Litopenaeus vannamei post larvae to low pH and salinity, Aquaculture, 2019, vol. 512, р. 734346.

Article  Google Scholar 

Yan, X., Nie, H., Huo, Z., et al., Clam genome sequence clarifies the molecular basis of its benthic adaptation and extraordinary shell color diversity, Science, 2019, vol. 19, pp. 1225—1237.

Google Scholar 

Zatsepina, O.G., Nikitina, E.A., Shilova, V.Y., et al., Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster, Cell Stress Chaperon, 2021, vol. 26, no. 3, pp. 575—594.

Article  CAS  Google Scholar 

Koneru, S.L., Hintze, M., Katsanos, D., et al., Cryptic genetic variation in a heat shock protein modifies the outcome of a mutation affecting epidermal stem cell development in C. elegans, Nat. Commun., 2021, vol. 12, no. 1, p. 3263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan, Y., Xiong, D., Wang, Y., et al., Toxicological effects of microplastics in Litopenaeus vannamei as indicated by an integrated microbiome, proteomic and metabolomic approach, Sci. Total Environ., 2021, vol. 761, р. 143311.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif