Mulbauer GD, Matthew HWT. Biomimetic scaffolds in skeletal muscle regeneration. Discoveries. 7(1):e90, https://doi.org/10.15190/d.2019.3 (Craiova).
Csapo R, Gumpenberger M, Wessner B. Skeletal muscle extracellular matrix - what do we know about its composition, regulation, and physiological roles? A Narrative Review. Front Physiol. 2020;11:253. https://doi.org/10.3389/fphys.2020.00253.
Rowland LA, Bal NC, Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev Camb Philos Soc. 2015;90(4):1279–97. https://doi.org/10.1111/brv.12157.
Baskin KK, Winders BR, Olson EN. Muscle as a “mediator“ of systemic metabolism. Cell Metab. 2015;21(2):237–48. https://doi.org/10.1016/j.cmet.2014.12.021.
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8). https://doi.org/10.1038/nrendo.2012.49.
Kasukonis B, et al. Codelivery of infusion decellularized skeletal muscle with minced muscle autografts improved recovery from volumetric muscle loss injury in a rat model. Tissue Eng Part A. 2016;22(19–20):1151–63. https://doi.org/10.1089/ten.TEA.2016.0134.
Corona BT, Rivera JC, Owens JG, Wenke JC, Rathbone CR. Volumetric muscle loss leads to permanent disability following extremity trauma. J Rehabil Res Dev. 2015;52(7):785–92. https://doi.org/10.1682/JRRD.2014.07.0165.
Grogan BF, Hsu JR, STR Consortium. Volumetric muscle loss. JAAOS - J Am Acad Orthop Surg. 2011;19:S35.
Liu J, Saul D, Böker KO, Ernst J, Lehman W, Schilling AF. Current methods for skeletal muscle tissue repair and regeneration. BioMed Res Int. 2018. https://www.hindawi.com/journals/bmri/2018/1984879/. Accessed 04 Oct 2018.
Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2(10):819–29. https://doi.org/10.1016/S2213-8587(14)70034-8.
West SL, Lok CE, Jamal SA. Fracture risk assessment in chronic kidney disease, prospective testing under real world environments (FRACTURE): a prospective study. BMC Nephrol. 2010;11:17. https://doi.org/10.1186/1471-2369-11-17.
Bianchi B, Copelli C, Ferrari S, Ferri A, Sesenna E. Free flaps: outcomes and complications in head and neck reconstructions. J Craniomaxillofac Surg. 2009;37(8):438–42. https://doi.org/10.1016/j.jcms.2009.05.003.
Aguilar CA, et al. Multiscale analysis of a regenerative therapy for treatment of volumetric muscle loss injury. Cell Death Discov. 2018;4:33. https://doi.org/10.1038/s41420-018-0027-8.
Eckardt A, Fokas K. Microsurgical reconstruction in the head and neck region: an 18-year experience with 500 consecutive cases. J Craniomaxillofac Surg. 2003;31(4):197–201. https://doi.org/10.1016/s1010-5182(03)00039-8.
Stevanovic MV, Cuéllar VG, Ghiassi A, Sharpe F. Single-stage reconstruction of elbow flexion associated with massive soft-tissue defect using the latissimus dorsi muscle bipolar rotational transfer. Plast Reconstr Surg Glob Open. 2016;4(9):e1066. https://doi.org/10.1097/GOX.0000000000001066.
Barrera-Ochoa S, Collado-Delfa JM, Sallent A, Lluch A, Velez R. Free neurovascular latissimus dorsi muscle transplantation for reconstruction of hip abductors. Plast Reconstr Surg Glob Open. 2017;5(9):e1498. https://doi.org/10.1097/GOX.0000000000001498.
Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med. 2012;4(160):160ed9. https://doi.org/10.1126/scitranslmed.3004467.
Laurencin, C.T., & Khan, Y. (Eds.). (2013) Regenerative Engineering (1st ed.). CRC Press. https://doi.org/10.1201/b14925
Laurencin CT, Nair LS. The Quest toward limb regeneration: a regenerative engineering approach. Regen Biomater. 2016;3(2):123–5. https://doi.org/10.1093/rb/rbw002.
Mengsteab PY, Freeman J, Barajaa MA, Nair LS, Laurencin CT. Ligament regenerative engineering: braiding scalable and tunable bioengineered ligaments using a bench-top braiding machine. Regen Eng Transl Med. 2020. https://doi.org/10.1007/s40883-020-00178-8.
Barajaa MA, Nair LS, Laurencin CT. Bioinspired scaffold designs for regenerating musculoskeletal tissue interfaces. Regen Eng Transl Med. 2019. https://doi.org/10.1007/s40883-019-00132-3.
Daneshmandi L, Barajaa M, Tahmasbi Rad A, Sydlik SA, Laurencin CT. Graphene-based biomaterials for bone regenerative engineering: a comprehensive review of the field and considerations regarding biocompatibility and biodegradation. Adv Healthc Mater. 2021;10(1):2001414. https://doi.org/10.1002/adhm.202001414.
Barajaa MA, Nair LS, Laurencin CT. Robust phenotypic maintenance of limb cells during heterogeneous culture in a physiologically relevant polymeric-based constructed graft system. Sci Rep. 2020;10(1):11739. https://doi.org/10.1038/s41598-020-68658-z.
Ogueri KS, et al. In vivo evaluation of the regenerative capability of glycylglycine ethyl ester-substituted polyphosphazene and poly(lactic-co-glycolic acid) blends: a rabbit critical-sized bone defect model. ACS Biomater Sci Eng. 2021;7(4):1564–72. https://doi.org/10.1021/acsbiomaterials.0c01650.
Seyedsalehi A, Daneshmandi L, Barajaa M, Riordan J, Laurencin CT. Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds. Sci Rep. 2020;10(1):22210. https://doi.org/10.1038/s41598-020-78977-w.
Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(Suppl 4):467–79. https://doi.org/10.1007/s00586-008-0745-3.
Tang X, Daneshmandi L, Awale G, Nair LS, Laurencin CT. Skeletal muscle regenerative engineering. Regen Eng Transl Med. 2019;5(3):233–51. https://doi.org/10.1007/s40883-019-00102-9.
Lev R, Seliktar D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J R Soc Interface. 2018;15(138):20170380. https://doi.org/10.1098/rsif.2017.0380.
Fischer KM, et al. Hydrogels for skeletal muscle regeneration. Regen Eng Transl Med. 2021;7(3):353–61. https://doi.org/10.1007/s40883-019-00146-x.
Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15. https://doi.org/10.1016/j.actbio.2016.11.068.
Boso D, Maghin E, Carraro E, Giagante M, Pavan P, Piccoli M. Extracellular matrix-derived hydrogels as biomaterial for different skeletal muscle tissue replacements. Materials. 2020;13(11):2483. https://doi.org/10.3390/ma13112483. (Basel).
Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014;23(8 Suppl 1):S20-23. https://doi.org/10.1097/IJG.0000000000000108.
Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 2014;163(4):268–85. https://doi.org/10.1016/j.trsl.2013.11.003.
Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318–31. https://doi.org/10.1002/mus.22094.
The importance of extracellular matrix in skeletal muscle development and function | IntechOpen. https://www.intechopen.com/chapters/49985. Accessed 06 Jun 2022.
Purslow PP. The structure and role of intramuscular connective tissue in muscle function. Front Physiol. 2020;11:495. https://doi.org/10.3389/fphys.2020.00495.
Passerieux E, et al. Structural organization of the perimysium in bovine skeletal muscle: Junctional plates and associated intracellular subdomains. J Struct Biol. 2006;154(2):206–16. https://doi.org/10.1016/j.jsb.2006.01.002.
Stecco C, Hammer W, Vleeming A, De Caro R. 3 - Deep Fasciae. In Functional Atlas of the Human Fascial System, C. Stecco, W. Hammer, A. Vleeming, and R. De Caro, Eds., Churchill Livingstone; 2015. pp. 51–102. https://doi.org/10.1016/B978-0-7020-4430-4.00003-8.
Sanes JR. The basement membrane/basal lamina of skeletal muscle. J Biol Chem. 2003;278(15):12601–4. https://doi.org/10.1074/jbc.R200027200.
Khalilgharibi N, Mao Y. To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease. Open Biol. 2021;11(2):200360. https://doi.org/10.1098/rsob.200360.
Holmberg J, Durbeej M. Laminin-211 in skeletal muscle function. Cell Adh Migr. 2013;7(1):111–21. https://doi.org/10.4161/cam.22618.
Kjær M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–98. https://doi.org/10.1152/physrev.00031.2003.
Janson IA, Putnam AJ. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J Biomed Mater Res A. 2015;103(3):1246–58. https://doi.org/10.1002/jbm.a.35254.
Grzelkowska-Kowalczyk K. The importance of extracellular matrix in skeletal muscle development and function. IntechOpen. 2016. https://doi.org/10.5772/62230.
Thorsteinsdóttir S, Deries M, Cachaço AS, Bajanca F. The extracellular matrix dimension of skeletal muscle development. Dev Biol. 2011;354(2):191–207. https://doi.org/10.1016/j.ydbio.2011.03.015.
Takala TE, Virtanen P. Biochemical composition of muscle extracellular matrix: the effect of loading. Scand J Med Sci Sports. 2000;10(6):321–5. https://doi.org/10.1034/j.1600-0838.2000.010006321.x.
Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol. 2014;802:31–47. https://doi.org/10.1007/978-94-007-7893-1_3.
Comments (0)