Defining the Learning Period of a Novel Imageless Navigation System for Posterior Approach Total Hip Arthroplasty: Analysis of Surgical Time and Accuracy

Jacob, I., Benson, J., Shanaghan, K., & Valle, G. D. A. (2020). Acetabular positioning is more consistent with the use of a novel miniature computer-assisted device. International Orthopaedics, 44(3), 429–435. https://doi.org/10.1007/s00264-020-04484-2

Article  PubMed  Google Scholar 

Liu, Z., Gao, Y., & Cai, L. (2015). Imageless navigation versus traditional method in total hip arthroplasty: A meta-analysis. International Journal of Surgery, 21, 122–127. https://doi.org/10.1016/j.ijsu.2015.07.707

Article  PubMed  Google Scholar 

King, J., Stamper, D. L., Schaad, D. C., & Leopold, S. S. (2007). Minimally invasive total knee arthroplasty compared with traditional total knee arthroplasty. Assessment of the learning curve and the postoperative recuperative period. Journal of Bone and Joint Surgery, American, 89(7), 1497–1503. https://doi.org/10.2106/JBJS.F.00867

Article  Google Scholar 

Wixson, R. L., & MacDonald, M. A. (2005). Total hip arthroplasty through a minimal posterior approach using imageless computer-assisted hip navigation. Journal of Arthroplasty, 20(7 Suppl 3), 51–56. https://doi.org/10.1016/j.arth.2005.04.024

Article  PubMed  Google Scholar 

Kamenaga, T., Hayashi, S., Hashimoto, S., Matsumoto, T., Takayama, K., Fujishiro, T., et al. (2019). Accuracy of cup orientation and learning curve of the accelerometer-based portable navigation system for total hip arthroplasty in the supine position. Journal of Orthopaedic Surgery (Hong Kong), 27(2), 2309499019848871. https://doi.org/10.1177/2309499019848871

Article  PubMed  Google Scholar 

Valsamis, E. M., Ricketts, D., Hussain, A., & Jenabzadeh, A. R. (2018). Imageless navigation total hip arthroplasty—An evaluation of operative time. SICOT J, 4, 18. https://doi.org/10.1051/sicotj/2018016

Article  PubMed  PubMed Central  Google Scholar 

Najarian, B. C., Kilgore, J. E., & Markel, D. C. (2009). Evaluation of component positioning in primary total hip arthroplasty using an imageless navigation device compared with traditional methods. Journal of Arthroplasty, 24(1), 15–21. https://doi.org/10.1016/j.arth.2008.01.004

Article  PubMed  Google Scholar 

Ektas, N., Scholes, C., Ruiz, A. M., & Ireland, J. (2020). Validity of intraoperative imageless navigation (Naviswiss) for component positioning accuracy in primary total hip arthroplasty: Protocol for a prospective observational cohort study in a single-surgeon practice. British Medical Journal Open, 10(10), e037126. https://doi.org/10.1136/bmjopen-2020-037126

Article  Google Scholar 

Thorey, F., Klages, P., Lerch, M., Floerkemeier, T., Windhagen, H., & von Lewinski, G. (2009). Cup positioning in primary total hip arthroplasty using an imageless navigation device: Is there a learning curve? Orthopedics, 32(10 Suppl), 14–17. https://doi.org/10.3928/01477447-20090915-52

Article  PubMed  Google Scholar 

Lewinnek, G. E., Lewis, J. L., Tarr, R., Compere, C. L., & Zimmerman, J. R. (1978). Dislocations after total hip-replacement arthroplasties. Journal of Bone and Joint Surgery, American Volume, 60(2), 217–220.

CAS  PubMed  Google Scholar 

Bachhal, V., Jindal, N., Saini, G., Sament, R., Kumar, V., Chouhan, D., et al. (2012). A new method of measuring acetabular cup anteversion on simulated radiographs. International Orthopaedics, 36(9), 1813–1818. https://doi.org/10.1007/s00264-012-1583-9

Article  PubMed  PubMed Central  Google Scholar 

Maccario, C., Tan, E. W., Di Silvestri, C. A., Indino, C., Kang, H. P., & Usuelli, F. G. (2021). Learning curve assessment for total ankle replacement using the transfibular approach. Foot and Ankle Surgery, 27(2), 129–137. https://doi.org/10.1016/j.fas.2020.03.005

Article  PubMed  Google Scholar 

Wei, W. W. (2006). Time series analysis. In The Oxford handbook of quantitative methods in psychology (Vol. 2).

Kendall, M. G. (1948). Rank correlation methods (4th ed.). Griffin.

Google Scholar 

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica. https://doi.org/10.2307/1907187

Article  Google Scholar 

Brown, M. L., Reed, J. D., & Drinkwater, C. J. (2014). Imageless computer-assisted versus conventional total hip arthroplasty: One surgeon’s initial experience. Journal of Arthroplasty, 29(5), 1015–1020. https://doi.org/10.1016/j.arth.2013.10.007

Article  PubMed  Google Scholar 

Manzotti, A., Cerveri, P., De Momi, E., Pullen, C., & Confalonieri, N. (2011). Does computer-assisted surgery benefit leg length restoration in total hip replacement? Navigation versus conventional freehand. International Orthopaedics, 35(1), 19–24. https://doi.org/10.1007/s00264-009-0903-1

Article  PubMed  Google Scholar 

Migliorini, F., Cuozzo, F., Oliva, F., Eschweiler, J., Hildebrand, F., & Maffulli, N. (2022). Imageless navigation for primary total hip arthroplasty: A meta-analysis study. Journal of Orthopaedics and Traumatology, 23(1), 21. https://doi.org/10.1186/s10195-022-00636-9

Article  PubMed  PubMed Central  Google Scholar 

Lee, Y. K., Biau, D. J., Yoon, B. H., Kim, T. Y., Ha, Y. C., & Koo, K. H. (2014). Learning curve of acetabular cup positioning in total hip arthroplasty using a cumulative summation test for learning curve (LC-CUSUM). Journal of Arthroplasty, 29(3), 586–589. https://doi.org/10.1016/j.arth.2013.07.023

Article  PubMed  Google Scholar 

Schmidt, C. A., & Hoffart, H. E. (2006, March). Learning curve and influencing factors of navigated total hip arthroplasty. In Orthopaedic proceedings (Vol. 88, No. SUPP_I, pp. 59–59). Bone & Joint.

Comments (0)

No login
gif