Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462–512.
Almond D, Mazumder B. Fetal origins and parental responses. Annu Rev Econ. 2013;5(1):37–56.
Almond D, Currie J. Killing me softly: the fetal origins hypothesis. J Econ Perspect. 2011;25(3):153–72.
Article PubMed PubMed Central Google Scholar
Nilsson JP. The long-term effects of early childhood lead exposure: Evidence from the phase-out of leaded gasoline. Institute for Labour Market Policy Evaluation (IFAU) Work: Pap; Uppsala, Uppsala County. 2009.
Singh P, Dey S, Chowdhury S, Bali K. Early life exposure to outdoor air pollution: effect on child health in India. Delhi, Delhi. 2019.
Almond D, Edlund L, Palme M. Chernobyl’s subclinical legacy: prenatal exposure to radioactive fallout and school outcomes in Sweden. Q J Econ. 2009;124(4):1729–72.
Bharadwaj P, Zivin JG, Mullins JT, Neidell M. Early-life exposure to the great smog of 1952 and the development of asthma. Am J Respir Crit Care Med. 2016;194(12):1475–82.
Article PubMed PubMed Central Google Scholar
von Hinke S, Sørensen EN. The long-term effects of early-life pollution exposure: Evidence from the London Smog. J Health Econ. 2023;102827.
Ball A. The long-term economic costs of the Great London Smog. 2018. Birkbeck University of London Work. Pap.
Black SE, Bütikofer A, Devereux PJ, Salvanes KG. This is only a test? Long-run impacts of prenatal exposure to radioactive fallout (No. w18987). Cambridge, Massachusetts. Natl Bur Econ Res. 2013.
Rosales-Rueda M, Triyana M. The persistent effects of early-life exposure to air pollution evidence from the indonesian forest fires. J Hum Resour. 2019;54(4):1037–80.
Barker DJ. Fetal origins of coronary heart disease. Bmj. 1995;311(6998):171–4.
Article CAS PubMed PubMed Central Google Scholar
Almond D, Currie J. Killing me softly: the fetal origins hypothesis. J Econ Perspect. 2011;25(3):153–72.
Article PubMed PubMed Central Google Scholar
Boamah-Kaali E, Jack DW, Ae-Ngibise KA, Quinn A, Kaali S, Dubowski K, et al. Prenatal and postnatal household air pollution exposure and infant growth trajectories: evidence from a rural Ghanaian pregnancy cohort. Environ Health Perspect. 2021;129(11):117009.
Article CAS PubMed PubMed Central Google Scholar
Korten I, Ramsey K, Latzin P. Air pollution during pregnancy and lung development in the child. Paediatr Respir Rev. 2017;21:38–46.
Bettiol A, Gelain E, Milanesio E, Asta F, Rusconi F. The first 1000 days of life: traffic-related air pollution and development of wheezing and asthma in childhood. A systematic review of birth cohort studies. Environ Health. 2021;20(1):1–10.
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, et al. Air pollution and children’s health—a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med. 2021;26(1):1–29.
Hajat A, MacLehose RF, Rosofsky A, Walker KD, Clougherty JE. Confounding by socioeconomic status in epidemiological studies of air pollution and health: challenges and opportunities. Environ Health Perspect. 2021;129(6):065001.
Article CAS PubMed PubMed Central Google Scholar
Bell ML, Davis DL. Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environ Health Perspect. 2001;109(suppl 3):389–94.
Article CAS PubMed PubMed Central Google Scholar
Wilkins E. Air pollution aspects of the London fog of December 1952. Q J R Meteorol Soc. 1954;80(344):267–71.
Bell ML, Davis DL, Fletcher T. A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollution. Environ Health Perspect. 2004;112(1):6–8.
Article PubMed PubMed Central Google Scholar
Fukushima N. The UK Clean Air Act, black smoke, and infant mortality: Competitive Advantage in the Global Economy (CAGE); Warwick, Rhode Island. 2021.
van Alten S, Domingue BW, Galama T, Marees AT. Reweighting the UK Biobank to reflect its underlying sampling population substantially reduces pervasive selection bias due to volunteering. Los Angeles, California, medRxiv. 2022;2022–05.
Evans RW, Hu Y, Zhao Z. The fertility effect of catastrophe: US hurricane births. J Popul Econ. 2010;23(1):1–36.
Rodgers JL, John CAS, Coleman R. Did fertility go up after the Oklahoma City bombing? An analysis of births in metropolitan counties in Oklahoma, 1990–1999. Demography. 2005;42(4):675–92.
Nandi A, Mazumdar S, Behrman JR. The effect of natural disaster on fertility, birth spacing, and child sex ratio: evidence from a major earthquake in India. J Popul Econ. 2018;31(1):267–93.
Clarke D, Romano JP, Wolf M. The Romano–Wolf multiple-hypothesis correction in Stata. Stata J. 2020;20(4):812–43.
Kraemer S. The fragile male. Bmj. 2000;321(7276):1609–12.
Article CAS PubMed PubMed Central Google Scholar
Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJ. Boys live dangerously in the womb. Am J Hum Biol. 2010;22(3):330–5.
Article PubMed PubMed Central Google Scholar
Currie J, Neidell M. Air pollution and infant health: what can we learn from California’s recent experience? Q J Econ. 2005;120(3):1003–30.
Bové H, Bongaerts E, Slenders E, Bijnens EM, Saenen ND, Gyselaers W, et al. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun. 2019;10(1):1–7.
Bongaerts E, Lecante LL, Bové H, Roeffaers MB, Ameloot M, Fowler PA, et al. Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies. Lancet Planet Health. 2022;6(10):e804–e11.
Article PubMed PubMed Central Google Scholar
Kotecha S. Lung growth: implications for the newborn infant. Arch Dis Child Fetal Neonatal Ed. 2000;82(1):F69–74.
Article CAS PubMed PubMed Central Google Scholar
Zhang D, Liu J, Li B. Tackling air pollution in China—what do we learn from the great smog of 1950s in London. Sustainability. 2014;6(8):5322–38.
Rousseau-Ralliard D, Richard C, Hoarau P, Lallemand M-S, Morillon L, Aubrière M-C, et al. Prenatal air pollution exposure to diesel exhaust induces cardiometabolic disorders in adulthood in a sex-specific manner. Environ Res. 2021;200:111690.
Article CAS PubMed Google Scholar
Zhang B, Liang S, Zhao J, Qian Z, Bassig BA, Yang R, et al. Maternal exposure to air pollutant PM2. 5 and PM10 during pregnancy and risk of congenital heart defects. J Expo Sci Environ Epidemiol. 2016;26(4):422–7.
Article CAS PubMed PubMed Central Google Scholar
Carlos-Wallace FM, Zhang L, Smith MT, Rader G, Steinmaus C. Parental, in utero, and early-life exposure to benzene and the risk of childhood leukemia: a meta-analysis. Am J Epidemiol. 2016;183(1):1–14.
Kinney PL, Asante K-P, Lee AG, Burkart K, Boamah-Kaali E, Twumasi M, et al. Prenatal and postnatal household air pollution exposures and pneumonia risk: evidence from the Ghana randomized air pollution and health study. Chest. 2021;160(5):1634–44.
Article CAS PubMed PubMed Central Google Scholar
Bose S, Chiu Y-HM, Hsu H-HL, Di Q, Rosa MJ, Lee A, et al. Prenatal nitrate exposure and childhood asthma. Influence of maternal prenatal stress and fetal sex. Am J Respir Crit Care Med. 2017;196(11):1396–403.
Article CAS PubMed PubMed Central Google Scholar
Lu C, Peng W, Kuang J, Wu M, Wu H, Murithi RG, et al. Preconceptional and prenatal exposure to air pollution increases incidence of childhood pneumonia: a hypothesis of the (pre-) fetal origin of childhood pneumonia. Ecotoxicol Environ Saf. 2021;210:111860.
Article CAS PubMed Google Scholar
Lu C, Norbäck D, Li Y, Deng Q. Early-life exposure to air pollution and childhood allergic diseases: an update on the link and its implications. Expert Rev Clin Immunol. 2020;16(8):813–27.
Article CAS PubMed Google Scholar
Sharkhuu T, Doerfler DL, Krantz QT, Luebke RW, Linak WP, Gilmour MI. Effects of prenatal diesel exhaust inhalation on pulmonary inflammation and development of specific immune responses. Toxicol Lett. 2010;196(1):12–20.
Article CAS PubMed Google Scholar
Lau C, Behlen JC, Myers A, Li Y, Zhao J, Harvey N, et al. In utero ultrafine particulate exposure yields sex-and dose-specific responses to neonatal respiratory syncytial virus infection. Environ Sci Technol. 2022;56(16):11527–35.
Article CAS PubMed PubMed Central Google Scholar
Shao J, Zosky GR, Hall GL, Wheeler AJ, Dharmage S, Melody S, et al. Early life exposure to coal mine fire smoke emissions and altered lung function in young children. Respirology. 2020;25(2):198–205.
Rychlik KA, Secrest JR, Lau C, Pulczinski J, Zamora ML, Leal J, et al. In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression. Proc Natl Acad Sci U S A. 2019;116(9):3443–8.
Comments (0)