Vico L, Hargens A (2018) Skeletal changes during and after spaceflight. Nat Rev Rheumatol 14:229–245. https://doi.org/10.1038/nrrheum.2018.37
Tominari T, Ichimaru R, Taniguchi K, Yumoto A, Shirakawa M, Matsumoto C, Watanabe K, Hirata M, Itoh Y, Shiba D, Miyaura C, Inada M (2019) Hypergravity and microgravity exhibited reversal effects on the bone and muscle mass in mice. Sci Rep 9:6614. https://doi.org/10.1038/s41598-019-42829-z
Article CAS PubMed PubMed Central Google Scholar
Vico L, Barou O, Laroche N, Alexandre C, Lafage-Proust MH (1999) Effects of centrifuging at 2g on rat long bone metaphyses. Eur J Appl Physiol 80:360–366. https://doi.org/10.1007/s004210050604
Gnyubkin V, Guignandon A, Laroche N, Vanden-Bossche A, Normand M, Lafage-Proust MH, Vico L (2015) Effects of chronic hypergravity: from adaptive to deleterious responses in growing mouse skeleton. J Appl Physiol 119:908–917. https://doi.org/10.1152/japplphysiol.00364.2015
Article CAS PubMed Google Scholar
Hodkinson PD, Anderton RA, Posselt BN, Fong KJ (2017) An overview of space medicine. Br J Anaesth 119:i143–i153. https://doi.org/10.1093/bja/aex336
Article CAS PubMed Google Scholar
Liu CJ (2022) The study of dynamic response and injuries of pilot’s neck during emergency ejection under high G loading. Tianjin University of technology. https://doi.org/10.27360/d.cnki.gtlgy.2022.000324
Teranishi M, Kurose T, Nakagawa K, Kawahara Y, Yuge L (2023) Hypergravity enhances RBM4 expression in human bone marrow-derived mesenchymal stem cells and accelerates their differentiation into neurons. Regen Ther 22:109–114. https://doi.org/10.1016/j.reth.2022.12.010
Article CAS PubMed PubMed Central Google Scholar
Miwa M, Kozawa O, Tokuda H, Kawakubo A, Yoneda M, Oiso Y, Takatsuki K (1991) Effects of hypergravity on proliferation and differentiation of osteoblast-like cells. Bone Miner 14:15–25. https://doi.org/10.1016/0169-6009(91)90099-l
Article CAS PubMed Google Scholar
Furutsu M, Kawashima K, Negishi Y, Endo H (2000) Bidirectional effects of hypergravity on the cell growth and differentiated functions of osteoblast-like ROS17/2.8 cells. Biol Pharm Bull 23:1258–1261. https://doi.org/10.1248/bpb.23.1258
Article CAS PubMed Google Scholar
Kacena MA, Todd P, Gerstenfeld LC, Landis WJ (2004) Experiments with osteoblasts cultured under hypergravity conditions. Microgravity Sci Technol 15:28–34. https://doi.org/10.1007/bf02870949
Lu Y, Shuping W, Biao H, Lilan G, Yang Z, Xizheng Z (2022) Biomedical response of femurs in male Wistar rat in chronic hypergravity environments. Med Nov Technol Devices. https://doi.org/10.1016/J.MEDNTD.2022.100161
Zhu XR, Deng TZ, Pang JL, Liu B, Ke J (2019) Effect of high positive acceleration (+Gz) environment on dental implant osseointegration: a preliminary animal study. Biomed Environ Sci 32:687–698. https://doi.org/10.3967/bes2019.087
Lawrence EA, Aggleton J, van Loon J, Godivier J, Harniman R, Pei J, Nowlan N, Hammond C (2021) Exposure to hypergravity during zebrafish development alters cartilage material properties and strain distribution. Bone Joint Res 10:137–148. https://doi.org/10.1302/2046-3758.102.bjr-2020-0239.r1
Article PubMed PubMed Central Google Scholar
Chapes SK, Simske SJ, Sonnenfeld G, Miller ES, Zimmerman RJ (1999) Effects of spaceflight and PEG-IL-2 on rat physiological and immunological responses. J Appl Physiol 86:2065–2076. https://doi.org/10.1152/jappl.1999.86.6.2065. (1985)
Article CAS PubMed Google Scholar
Baqai FP, Gridley DS, Slater JM, Luo-Owen X, Stodieck LS, Ferguson V, Chapes SK, Pecaut MJ (2009) Effects of spaceflight on innate immune function and antioxidant gene expression. J Appl Physiol 106:1935–1942. https://doi.org/10.1152/japplphysiol.91361.2008. (1985)
Article CAS PubMed PubMed Central Google Scholar
Fuller PM, Jones TA, Jones SM, Fuller CA (2002) Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection? Proc Natl Acad Sci U S A 99:15723–15728. https://doi.org/10.1073/pnas.242251499
Article CAS PubMed PubMed Central Google Scholar
Moran MM, Stein TP, Wade CE (2001) Hormonal modulation of food intake in response to low leptin levels induced by hypergravity. Exp Biol Med (Maywood) 226:740–745. https://doi.org/10.1177/153537020222600805
Article CAS PubMed Google Scholar
Kita S, Shibata S, Kim H, Otsubo A, Ito M, Iwasaki K (2006) Dose-dependent effects of hypergravity on body mass in mature rats. Aviat Space Environ Med 77:842–845
Guéguinou N, Bojados M, Jamon M, Derradji H, Baatout S, Tschirhart E, Frippiat JP, Legrand-Frossi C (2012) Stress response and humoral immune system alterations related to chronic hypergravity in mice. Psychoneuroendocrinology 37:137–147. https://doi.org/10.1016/j.psyneuen.2011.05.015
Article CAS PubMed Google Scholar
Aviles H, Belay T, Vance M, Sonnenfeld G (2005) Effects of space flight conditions on the function of the immune system and catecholamine production simulated in a rodent model of hindlimb unloading. NeuroImmunoModulation 12:173–181. https://doi.org/10.1159/000084850
Article CAS PubMed Google Scholar
Holbrook TL, Barrett-Connor E (1993) The association of lifetime weight and weight control patterns with bone mineral density in an adult community. Bone Miner 20:141–149. https://doi.org/10.1016/s0169-6009(08)80023-2
Article CAS PubMed Google Scholar
Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19:595–606. https://doi.org/10.1007/s00198-007-0492-z
Article CAS PubMed Google Scholar
Canciani B, Ruggiu A, Giuliani A, Panetta D, Marozzi K, Tripodi M, Salvadori PA, Cilli M, Ohira Y, Cancedda R, Tavella S (2015) Effects of long time exposure to simulated micro- and hypergravity on skeletal architecture. J Mech Behav Biomed Mater 51:1–12. https://doi.org/10.1016/j.jmbbm.2015.06.014
Kohles SS, Bowers JR, Vailas AC, Vanderby R Jr (1996) Effect of a hypergravity environment on cortical bone elasticity in rats. Calcif Tissue Int 59:214–217. https://doi.org/10.1007/s002239900111
Article CAS PubMed Google Scholar
Martinez DA, Orth MW, Carr KE, Vanderby R Jr, Vasques M, Grindeland RE, Vailas AC (1998) Cortical bone responses to 2G hypergravity in growing rats. Aviat Space Environ Med 69:A17–A22
Ikawa T, Kawaguchi A, Okabe T, Ninomiya T, Nakamichi Y, Nakamura M, Uehara S, Nakamura H, Udagawa N, Takahashi N, Nakamura H, Wakitani S (2011) Hypergravity suppresses bone resorption in ovariectomized rats. Adv Space Res 47:1214–1224. https://doi.org/10.1016/j.asr.2010.12.004
Rocher E, Chappard C, Jaffre C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Bone Miner Metab 26:73–78. https://doi.org/10.1007/s00774-007-0786-4
Frost HM (1994) Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188. https://doi.org/10.1043/0003-3219(1994)064%3c0175:Wlabsa%3e2.0.Co;2
Article CAS PubMed Google Scholar
Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec 226:403–413. https://doi.org/10.1002/ar.1092260402
Article CAS PubMed Google Scholar
Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec 226:414–422. https://doi.org/10.1002/ar.1092260403
Article CAS PubMed Google Scholar
Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 3. The hyaline cartilage modeling problem. Anat Rec 226:423–432. https://doi.org/10.1002/ar.1092260404
Article CAS PubMed Google Scholar
Skerry TM (2006) One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact 6:122–127
Dechaumet B, Cleret D, Linossier MT, Vanden-Bossche A, Chanon S, Lefai E, Laroche N, Lafage-Proust MH, Vico L (2020) Hypergravity as a gravitational therapy mitigates the effects of knee osteoarthritis on the musculoskeletal system in a murine model. PLoS ONE 15:e0243098. https://doi.org/10.1371/journal.pone.0243098
Article CAS PubMed PubMed Central Google Scholar
Martin RB (1991) Determinants of the mechanical properties of bones. J Biomech 24:79–88. https://doi.org/10.1016/0021-9290(91)90379-2
Shimoide T, Kawao N, Morita H, Ishida M, Takafuji Y, Kaji H (2020) Roles of olfactomedin 1 in muscle and bone alterations induced by gravity change in mice. Calcif Tissue Int 107:180–190. https://doi.org/10.1007/s00223-020-00710-6
Comments (0)