Hypergravity stimulates mechanical behavior and micro-architecture of tibia in rats

Vico L, Hargens A (2018) Skeletal changes during and after spaceflight. Nat Rev Rheumatol 14:229–245. https://doi.org/10.1038/nrrheum.2018.37

Article  PubMed  Google Scholar 

Tominari T, Ichimaru R, Taniguchi K, Yumoto A, Shirakawa M, Matsumoto C, Watanabe K, Hirata M, Itoh Y, Shiba D, Miyaura C, Inada M (2019) Hypergravity and microgravity exhibited reversal effects on the bone and muscle mass in mice. Sci Rep 9:6614. https://doi.org/10.1038/s41598-019-42829-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vico L, Barou O, Laroche N, Alexandre C, Lafage-Proust MH (1999) Effects of centrifuging at 2g on rat long bone metaphyses. Eur J Appl Physiol 80:360–366. https://doi.org/10.1007/s004210050604

Article  CAS  Google Scholar 

Gnyubkin V, Guignandon A, Laroche N, Vanden-Bossche A, Normand M, Lafage-Proust MH, Vico L (2015) Effects of chronic hypergravity: from adaptive to deleterious responses in growing mouse skeleton. J Appl Physiol 119:908–917. https://doi.org/10.1152/japplphysiol.00364.2015

Article  CAS  PubMed  Google Scholar 

Hodkinson PD, Anderton RA, Posselt BN, Fong KJ (2017) An overview of space medicine. Br J Anaesth 119:i143–i153. https://doi.org/10.1093/bja/aex336

Article  CAS  PubMed  Google Scholar 

Liu CJ (2022) The study of dynamic response and injuries of pilot’s neck during emergency ejection under high G loading. Tianjin University of technology. https://doi.org/10.27360/d.cnki.gtlgy.2022.000324

Teranishi M, Kurose T, Nakagawa K, Kawahara Y, Yuge L (2023) Hypergravity enhances RBM4 expression in human bone marrow-derived mesenchymal stem cells and accelerates their differentiation into neurons. Regen Ther 22:109–114. https://doi.org/10.1016/j.reth.2022.12.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miwa M, Kozawa O, Tokuda H, Kawakubo A, Yoneda M, Oiso Y, Takatsuki K (1991) Effects of hypergravity on proliferation and differentiation of osteoblast-like cells. Bone Miner 14:15–25. https://doi.org/10.1016/0169-6009(91)90099-l

Article  CAS  PubMed  Google Scholar 

Furutsu M, Kawashima K, Negishi Y, Endo H (2000) Bidirectional effects of hypergravity on the cell growth and differentiated functions of osteoblast-like ROS17/2.8 cells. Biol Pharm Bull 23:1258–1261. https://doi.org/10.1248/bpb.23.1258

Article  CAS  PubMed  Google Scholar 

Kacena MA, Todd P, Gerstenfeld LC, Landis WJ (2004) Experiments with osteoblasts cultured under hypergravity conditions. Microgravity Sci Technol 15:28–34. https://doi.org/10.1007/bf02870949

Article  PubMed  Google Scholar 

Lu Y, Shuping W, Biao H, Lilan G, Yang Z, Xizheng Z (2022) Biomedical response of femurs in male Wistar rat in chronic hypergravity environments. Med Nov Technol Devices. https://doi.org/10.1016/J.MEDNTD.2022.100161

Article  Google Scholar 

Zhu XR, Deng TZ, Pang JL, Liu B, Ke J (2019) Effect of high positive acceleration (+Gz) environment on dental implant osseointegration: a preliminary animal study. Biomed Environ Sci 32:687–698. https://doi.org/10.3967/bes2019.087

Article  PubMed  Google Scholar 

Lawrence EA, Aggleton J, van Loon J, Godivier J, Harniman R, Pei J, Nowlan N, Hammond C (2021) Exposure to hypergravity during zebrafish development alters cartilage material properties and strain distribution. Bone Joint Res 10:137–148. https://doi.org/10.1302/2046-3758.102.bjr-2020-0239.r1

Article  PubMed  PubMed Central  Google Scholar 

Chapes SK, Simske SJ, Sonnenfeld G, Miller ES, Zimmerman RJ (1999) Effects of spaceflight and PEG-IL-2 on rat physiological and immunological responses. J Appl Physiol 86:2065–2076. https://doi.org/10.1152/jappl.1999.86.6.2065. (1985)

Article  CAS  PubMed  Google Scholar 

Baqai FP, Gridley DS, Slater JM, Luo-Owen X, Stodieck LS, Ferguson V, Chapes SK, Pecaut MJ (2009) Effects of spaceflight on innate immune function and antioxidant gene expression. J Appl Physiol 106:1935–1942. https://doi.org/10.1152/japplphysiol.91361.2008. (1985)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuller PM, Jones TA, Jones SM, Fuller CA (2002) Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection? Proc Natl Acad Sci U S A 99:15723–15728. https://doi.org/10.1073/pnas.242251499

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moran MM, Stein TP, Wade CE (2001) Hormonal modulation of food intake in response to low leptin levels induced by hypergravity. Exp Biol Med (Maywood) 226:740–745. https://doi.org/10.1177/153537020222600805

Article  CAS  PubMed  Google Scholar 

Kita S, Shibata S, Kim H, Otsubo A, Ito M, Iwasaki K (2006) Dose-dependent effects of hypergravity on body mass in mature rats. Aviat Space Environ Med 77:842–845

PubMed  Google Scholar 

Guéguinou N, Bojados M, Jamon M, Derradji H, Baatout S, Tschirhart E, Frippiat JP, Legrand-Frossi C (2012) Stress response and humoral immune system alterations related to chronic hypergravity in mice. Psychoneuroendocrinology 37:137–147. https://doi.org/10.1016/j.psyneuen.2011.05.015

Article  CAS  PubMed  Google Scholar 

Aviles H, Belay T, Vance M, Sonnenfeld G (2005) Effects of space flight conditions on the function of the immune system and catecholamine production simulated in a rodent model of hindlimb unloading. NeuroImmunoModulation 12:173–181. https://doi.org/10.1159/000084850

Article  CAS  PubMed  Google Scholar 

Holbrook TL, Barrett-Connor E (1993) The association of lifetime weight and weight control patterns with bone mineral density in an adult community. Bone Miner 20:141–149. https://doi.org/10.1016/s0169-6009(08)80023-2

Article  CAS  PubMed  Google Scholar 

Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19:595–606. https://doi.org/10.1007/s00198-007-0492-z

Article  CAS  PubMed  Google Scholar 

Canciani B, Ruggiu A, Giuliani A, Panetta D, Marozzi K, Tripodi M, Salvadori PA, Cilli M, Ohira Y, Cancedda R, Tavella S (2015) Effects of long time exposure to simulated micro- and hypergravity on skeletal architecture. J Mech Behav Biomed Mater 51:1–12. https://doi.org/10.1016/j.jmbbm.2015.06.014

Article  PubMed  Google Scholar 

Kohles SS, Bowers JR, Vailas AC, Vanderby R Jr (1996) Effect of a hypergravity environment on cortical bone elasticity in rats. Calcif Tissue Int 59:214–217. https://doi.org/10.1007/s002239900111

Article  CAS  PubMed  Google Scholar 

Martinez DA, Orth MW, Carr KE, Vanderby R Jr, Vasques M, Grindeland RE, Vailas AC (1998) Cortical bone responses to 2G hypergravity in growing rats. Aviat Space Environ Med 69:A17–A22

CAS  PubMed  Google Scholar 

Ikawa T, Kawaguchi A, Okabe T, Ninomiya T, Nakamichi Y, Nakamura M, Uehara S, Nakamura H, Udagawa N, Takahashi N, Nakamura H, Wakitani S (2011) Hypergravity suppresses bone resorption in ovariectomized rats. Adv Space Res 47:1214–1224. https://doi.org/10.1016/j.asr.2010.12.004

Article  CAS  Google Scholar 

Rocher E, Chappard C, Jaffre C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Bone Miner Metab 26:73–78. https://doi.org/10.1007/s00774-007-0786-4

Article  PubMed  Google Scholar 

Frost HM (1994) Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188. https://doi.org/10.1043/0003-3219(1994)064%3c0175:Wlabsa%3e2.0.Co;2

Article  CAS  PubMed  Google Scholar 

Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec 226:403–413. https://doi.org/10.1002/ar.1092260402

Article  CAS  PubMed  Google Scholar 

Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec 226:414–422. https://doi.org/10.1002/ar.1092260403

Article  CAS  PubMed  Google Scholar 

Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 3. The hyaline cartilage modeling problem. Anat Rec 226:423–432. https://doi.org/10.1002/ar.1092260404

Article  CAS  PubMed  Google Scholar 

Skerry TM (2006) One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact 6:122–127

CAS  PubMed  Google Scholar 

Dechaumet B, Cleret D, Linossier MT, Vanden-Bossche A, Chanon S, Lefai E, Laroche N, Lafage-Proust MH, Vico L (2020) Hypergravity as a gravitational therapy mitigates the effects of knee osteoarthritis on the musculoskeletal system in a murine model. PLoS ONE 15:e0243098. https://doi.org/10.1371/journal.pone.0243098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin RB (1991) Determinants of the mechanical properties of bones. J Biomech 24:79–88. https://doi.org/10.1016/0021-9290(91)90379-2

Article  PubMed  Google Scholar 

Shimoide T, Kawao N, Morita H, Ishida M, Takafuji Y, Kaji H (2020) Roles of olfactomedin 1 in muscle and bone alterations induced by gravity change in mice. Calcif Tissue Int 107:180–190. https://doi.org/10.1007/s00223-020-00710-6

Comments (0)

No login
gif