Ketamine produces no detectable long-term positive or negative effects on cognitive flexibility or reinforcement learning of male rats

Alli AM, Hendawy AO (2018) So antidepressant drugs have serious adverse effects, but what are the alternatives? Novel Approaches Drug Designing Dev 4(3):555636. https://doi.org/10.19080/napdd.2018.04.555636

Article  Google Scholar 

Autry, A. E., Adachi, M., Nosyreva, E., Na, E. S., Los, M. F., Cheng, P., …, & Monteggia, L. M. (2011). NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 475, 91-97. https://doi.org/10.1038/nature10130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, Robbins TW (2010) Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 35:1290–1301. https://doi.org/10.1038/npp.2009.233

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bari BA, Moerke MJ, Jedema HP, Effinger DP, Cohen JY, Bradberry CW (2022) Reinforcement learning modeling reveals a reward-history-dependent strategy underlying reversal learning in squirrel monkeys. Behav Neurosci 136(1):46–60. https://doi.org/10.1037/bne0000492

Article  PubMed  Google Scholar 

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Article  Google Scholar 

Berman RM, Cappiello A, Amand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354. https://doi.org/10.1016/s0006-3223(99)00230-9

Article  CAS  PubMed  Google Scholar 

Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I (2015) Reinforcement learning in depression: a review of computational research. Neurosci Biobehav Rev 55:247–267. https://doi.org/10.1016/j.neubiorev.2015.05.005

Article  PubMed  Google Scholar 

Correll GE, Futter GE (2006) Two case studies of patients with major depressive disorder given low-dose (subanesthetic) ketamine infusions. Pain Med 7(1):92–95. https://doi.org/10.1111/j.1526-4637.2006.00101.x

Article  PubMed  Google Scholar 

Costa VD, Tran VL, Turchi J, Averbeck BB (2015) Reversal learning and dopamine: a Bayesian perspective. J Neurosci 35(6):2407–2416. https://doi.org/10.1523/JNEUROSCI.1989-14.2015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dajani DR, Uddin LQ (2015) Demystifying cognitive flexibility: implications for clinical and developmental neuroscience. Trends Neurosci 38(9):571–578. https://doi.org/10.1016/j.tins.2015.07.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalton GD, Ma LM, Phillips AG, Floresco SB (2011) Blockade of NMDA GluN2B receptors selectively impairs behavioral flexibility but not initial discrimination learning. Psychopharmacology 216:525–535. https://doi.org/10.1007/s00213-011-2246-z

Article  CAS  PubMed  Google Scholar 

den Ouden, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., …, & Cools, R. (2013). Dissociable effects of dopamine and serotonin on reversal learning. Neuron, 80, 1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

Article  CAS  Google Scholar 

Drozd R, Rychlik M, Fijalkowska A, Rygula R (2019) Effects of cognitive judgement bias and acute antidepressant treatment on sensitivity to feedback and cognitive flexibility in the rat version of the probabilistic reversal-learning test. Behav Brain Res 359:619–629. https://doi.org/10.1016/j.bbr.2018.10.003

Article  CAS  PubMed  Google Scholar 

Eshel N, Roiser JP (2010) Reward and punishment processing in depression. Biol Psychiatry 68:118–124. https://doi.org/10.1016/j.biopsych.2010.01.027

Article  PubMed  Google Scholar 

Fleshler M, Hoffman HS (1962) A progression for generating variable-interval schedules. J Exp Anal Behav 5(4):529–530. https://doi.org/10.1901/jeab.1962.5-529

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franceschelli A, Sens J, Herchick S, Thelen C, Pitychoutis PM (2015) Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and “depressed” mice exposed to chronic mild stress. Neuroscience 290:49–60. https://doi.org/10.1016/j.neuroscience.2015.01.008

Article  CAS  PubMed  Google Scholar 

Frazer A, Benmansour S (2002) Delayed pharmacological effects of antidepressants. Mol Psychiatry 7(S1):S23–S28. https://doi.org/10.1038/sj.mp.4001015

Article  CAS  PubMed  Google Scholar 

Gastambide F, Mitchell SN, Robbins TW, Tricklebank MD, Gilmour G (2013) Temporally distinct cognitive effects following acute administration of ketamine and phencyclidine in the rat. Eur Neuropsychopharmacol 23:1414–1422. https://doi.org/10.1016/j.euroneuro.2013.03.002

Article  CAS  PubMed  Google Scholar 

Geurts HM, Corbett B, Solomon M (2009) The paradox of cognitive flexibility in autism. Trends Cogn Sci 13(2):74–82. https://doi.org/10.1016/j.tics.2008.11.006

Article  PubMed  PubMed Central  Google Scholar 

Goforth HW, Holsinger T (2007) Rapid relief of severe major depressive disorder by use of preoperative ketamine and electroconvulsive therapy. J ECT 23(1):23–25. https://doi.org/10.1097/01.yct.0000263257.44539.23

Article  PubMed  Google Scholar 

Hamilton DA, Brigman JL (2015) Behavioral flexibility in rats and mice: contributions of distinct frontocortical regions. Genes Brain Behav 14:4–21. https://doi.org/10.1111/gbb.12191

Article  CAS  PubMed  Google Scholar 

Jett JD, Bulin SE, Hatherall LC, McCartney CM, Morilak DA (2017) Deficits in cognitive flexibility induced by chronic unpredictable stress are associated with impaired glutamate transmission in the rat medial prefrontal cortex. Neuroscience 346:284–297. https://doi.org/10.1016/j.neuroscience.2017.01.017

Article  CAS  PubMed  Google Scholar 

Jick H, Kaye JA, Jick SS (2004) Antidepressants and the risk of suicidal behaviors. JAMA 292(3):338–343. https://doi.org/10.1001/jama.292.3.338

Article  CAS  PubMed  Google Scholar 

Kandroodi MR, Cook JL, Swart JC, Frobose MI, Geurts DEM, Vahabie AH et al (2021) Effects of methylphenidate on reinforcement learning depend on working memory capacity. Psychopharmacology 238(12):3569–3584. https://doi.org/10.1007/s00213-021-05974-w

Article  CAS  Google Scholar 

Kanen JW, Apergis-Schoute AM, Yellowlees R, Arntz FE, van der Flier FE, Price A et al (2021) Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 26:7200–7210. https://doi.org/10.1038/s41380-021-01240-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanen JW, Ersche KD, Fineberg NA, Robbins TW, Cardinal RN (2019) Computational modeling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents. Psychopharmacology 236:2337–2358. https://doi.org/10.1007/s00213-019-05325-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanen JW, Luo Q, Kandroodi MR, Cardinal RN, Robbins TW, Nutt D et al (2022) Effect of lysergic acid diethylamide (LSD) on reinforcement learning in humans. Psychol Med 1-12. https://doi.org/10.1017/S0033291722002963

Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 62(6):593–602. https://doi.org/10.1001/archpsyc.62.6.593

Article  PubMed  Google Scholar 

Lawrence AD, Sahakian BJ, Rogers RD, Hodges JR, Robbins TW (1999) Discrimination, reversal, and shift learning in Huntington’s disease: mechanisms of impaired response selection. Neuropsychologia 37:1359–1374. https://doi.org/10.1016/s0028-3932(99)00035-4

Article  CAS  PubMed  Google Scholar 

Lee YA, Goto Y (2011) Chronic stress modulation of prefrontal cortical NMDA receptor expression disrupts limbic structure-prefrontal cortex interaction. Eur J Neurosci 34:426–436. https://doi.org/10.1111/j.1460-9568.2011.07750.x

Article  PubMed  Google Scholar 

Machado-Viera R, Salvadore G, Luckenbaugh DA, Manji HK, Zarate CA (2008) Rapid onset of antidepressant action: a new paradigm in the research and treatment of major depression. J Clin Psychiatry 69(6):946–958. https://doi.org/10.4088/jcp.v69n0610

Article  Google Scholar 

McGirr A, Berlim MT, Bond DJ, Fleck MP, Yatham LN, Lam RW (2015) A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 45:693–704. https://doi.org/10.1017/S0033291714001603

Article  CAS  PubMed  Google Scholar 

McGowan JC, LaGamma CT, Lim SC, Tsisikilis M, Neria Y, Brachman RA, Denny CA (2017) Prophylactic ketamine attenuates learned fear. Neuropsychopharmacology 42:1577–1589. https://doi.org/10.1038/npp.2017.19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meiran N, Diamond GM, Toder D, Nemets B (2011) Cognitive rigidity in unipolar depression and obsessive compulsive disorder: examination of task switching, stroop, working memory updating and post-conflict adaptation. Psychiatry Res 185:149–156. https://doi.org/10.1016/j.psychres.2010.04.044

Article  PubMed 

Comments (0)

No login
gif