Williams DF. The Williams dictionary of biomaterials. Liverpool University Press; 1999.
Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018;12:3117–45.
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.
Allcock HR, Kugel RL. Synthesis of high polymeric of alkoxy and aryloxyphosphonitriles. J Am Chem Soc Soc. 1965;87:4216.
Gleria M, De Jaeger R. Polyphosphazenes: a review. Top Curr Chem. 2005;250:165–251.
Deng M, Kumbar SG, Wan Y, Toti US, Allcock HR, Laurencin CT. Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter. 2010;6:3119–32.
Ahmad M, Nawaz T, Hussain I, Chen X, Imran M, Hussain R, et al. Phosphazene cyclomatrix network-based polymer: chemistry, synthesis, and applications. ACS Omega. 2022;7:28694–707.
Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5:128–54.
Ganapathiappan S, Dhathathreyan KS, Krishnamurthy SS. New initiators for the ring-opening thermal polymerization of hexachlorocyclotriphosphazene: synthesis of linear poly(dichlorophosphazene) in high yields. Macromolecules. 1987;20:1501–5.
Sennett MS, Hagnauer GL, Singler RE, Davies G. Kinetics and mechanism of the boron trichloride catalyzed thermal ring-opening polymerization of hexachlorocyclotriphosphazene in 1,2,4-trichlorobenzene solution. Macromolecules. 1986;19:959–64.
Scopelianos AG, Allcock HR. Notes polymerization of hexachlorocyclotriphosphazene in the presence of carbon disulfide. Macromolecules. 1987;20:432–3.
Ogueri KS, Ogueri KS, Allcock HR, Laurencin CT. Polyphosphazene polymers: the next generation of biomaterials for regenerative engineering and therapeutic drug delivery. J Vac Sci Technol B. 2020;38:030801.
Allcock HR, Crane CA, Morrissey CT, Nelson JM, Reeves SD, Honeyman CH, et al. “Living” cationic polymerization of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weights. Macromolecules. 1996;29:7740–7.
Allcock HR, Reeves SD, Nelson JM, Crane CA, Manners I. Polyphosphazene block copolymers via the controlled cationic, ambient temperature polymerization of phosphoranimines. Macromolecules. 1997;30:2213–5.
Honeyman CH, Manners I. Ambient temperature synthesis of poly(dichlorophosphazene) with molecular weight control. J Am Chem Soc. 1995;117:7035–6.
Carriedo GA, García Alonso FJ, Gómez-Elipe P, Fidalgo JI, García Álvarez JL, Presa-Soto A. A simplified and convenient laboratory-scale preparation of 14N or 15N high molecular weight poly(dichlorophosphazene) directly from PCl5. Chem Eur J. 2003;9:3833–6.
De Jaeger R, Gleriaby M. Poly(organophosphazene)s and related compounds: synthesis, properties and applications. Prog Polym Sci. 1998;23:179–276.
Osada Y, Hashidzume M, Tsuchida E, Bell AT. Polymerization of phosphazene crystal by plasma exposure. Nature. 1980;286:693–4.
Allcock HR, Morozowich NL. Bioerodible polyphosphazenes and their medical potential. Polym Chem. 2012;3:578–90.
Allcock HR, Chen C. Polyphosphazenes: phosphorus in inorganic-organic polymers. J Org Chem. 2020;85:14286–97.
Steinke JHG, Greenland BW, Johns S, Parker MP, Atkinson RCJ, Cade IA, et al. Robust and operationally simple synthesis of poly(bis(2,2,2- trifluoroethoxy) phosphazene) with controlled molecular weight, low PDI, and high conversion. ACS Macro Lett. 2014;3:548–51.
Meng L, Xu C, Liu T, Li H, Lu Q, Long J. One-pot synthesis of highly cross-linked fluorescent polyphosphazene nanoparticles for cell imaging. Polym Chem. 2015;6:3155–63.
Metinoğlu Örüm S, Süzen DY. One-pot synthesis and characterization of crosslinked polyphosphazene dopamine microspheres for controlled drug delivery applications. J Macromol Sci A. 2019;56:854–9.
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and polyphosphazenes for biomedical applications. Molecules. 2022;27:8117.
Allen RW, Allcock HR. Conformational analysis of poly (alkoxy-and aryloxyphosphazenes). Macromolecules. 1976;9:956–60.
Allcock HR, Allen RW, Meister J. Conformational analysis of poly(dihalophosphazenes). Macromolecules. 1976;9:950–5.
Mark JE, Allcock HR, West R. Inorganic polymers. Oxford University Press; 2005.
Allcock HR, McDonnell GS, Riding GS, Manners I. Influence of different organic side groups on the thermal behaviour of polyphosphazenes: random chain cleavage, depolymerization and pyrolytic cross-linking. Chem Mater. 1990;2:425–32.
Allcock HR, Krause WE. Polyphosphazenes with adamantyl side groups. Macromolecules. 1997;30:5683–7.
Allcock HR, Connolly MS, Sisko JT, Al-Shali S. Effects of organic side group structures on the properties of poly(organophosphazenes). Macromolecules. 1988;21:323–34.
Allcock HR. Poly(organophosphazenes)—unusual new high polymers. Angew Chem. 1977;16:147–56.
Boileau S, Illy N. Activation in anionic polymerization: why phosphazene bases are very exciting promoters. Prog Polym Sci. 2011;36:1132–51.
Allcock HR, Wagner LJ, Levin ML, Greigger PP. Synthesis and structure of transition-metal-bound phosphazenes derived from phosphazene anions. Organometallics. 1986;5:2244–50.
Allcock HR, Allen RW, O’Brien JP. Synthesis of platinum derivatives of polymeric and cyclic phosphazenes. J Am Chem Soc. 1977;99:3984–7.
O’Brien JP, Ferrar WT, Allcock HR. Photolysis of poly(alkoxy-and aryloxyphosphazenes), [NP(OR)2]n1, 2. Macromolecules. 1979;12:108–13.
Zheng C, Qiu L, Yao X, Zhu K. Novel micelles from graft polyphosphazenes as potential anti-cancer drug delivery systems: drug encapsulation and in vitro evaluation. Int J Pharm. 2009;373:133–40.
Rothemund S, Teasdale I. Preparation of polyphosphazenes: a tutorial review. Chem Soc Rev. 2016;45:5200–15.
Kumbar SG, Bhattacharyya S, Nukavarapu SP, Khan YM, Nair LS, Laurencin CT. In vitro and in vivo characterization of biodegradable poly(organophosphazenes) for biomedical applications. J Inorg Organomet Polym Mater. 2006;16:365–85.
Allcock HR, Pucher SR, Scopelianos AG. Synthesis of poly(organophosphazenes) with glycolic acid ester and lactic acid ester side groups: prototypes for new bioerodible polymers. Macromolecules. 1994;27:1–4.
Andrianov AK, Marin A, Chen J. Synthesis, properties, and biological activity of Poly[di(sodium carboxylatoethylphenoxy)phosphazene]. Biomacromol. 2006;7:394–9.
Andrianov AK, Svirkin YY, LeGolvan MP. Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromol. 2004;5:1999–2006.
Allcock HR, Fuller TJ, Matsumura K. Hydrolysis pathways for aminophosphazenes. Inorg Chem. 1982;21:515–21.
Allcock HR, Fuller TJ, Mack DP, Matsumura K, Smeltz KM. Synthesis of poly[(amino acid alkyl ester)phosphazene]. J Am Chem Soc. 1967;10:824–30.
Ogueri KS, Escobar Ivirico JL, Li Z, Blumenfield RH, Allcock HR, Laurencin CT. Synthesis, physicochemical analysis, and side group optimization of degradable dipeptide-based polyphosphazenes as potential regenerative biomaterials. ACS Appl Polym Mater. 2019;1:1568–78.
Weikel AL, Krogman NR, Nguyen NQ, Nair LS, Laurencin CT, Allcock HR. Polyphosphazenes that contain dipeptide side groups: synthesis, characterization, and sensitivity to hydrolysis. Macromolecules. 2009;42:636–9.
Schacht E, Vandorpe J, Dejardin S, Lemmouchi Y, Seymour L. Biomedical applications of degradable polyphosphazenes. Biotechnol Bioeng. 1996;52:102–8.
Comments (0)