Biodegradable Polyphosphazenes for Biomedical Applications

Williams DF. The Williams dictionary of biomaterials. Liverpool University Press; 1999.

Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018;12:3117–45.

Article  CAS  Google Scholar 

Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

Article  CAS  Google Scholar 

Allcock HR, Kugel RL. Synthesis of high polymeric of alkoxy and aryloxyphosphonitriles. J Am Chem Soc Soc. 1965;87:4216.

Article  CAS  Google Scholar 

Gleria M, De Jaeger R. Polyphosphazenes: a review. Top Curr Chem. 2005;250:165–251.

Article  CAS  Google Scholar 

Deng M, Kumbar SG, Wan Y, Toti US, Allcock HR, Laurencin CT. Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter. 2010;6:3119–32.

Article  CAS  Google Scholar 

Ahmad M, Nawaz T, Hussain I, Chen X, Imran M, Hussain R, et al. Phosphazene cyclomatrix network-based polymer: chemistry, synthesis, and applications. ACS Omega. 2022;7:28694–707.

Article  CAS  Google Scholar 

Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5:128–54.

Article  CAS  Google Scholar 

Ganapathiappan S, Dhathathreyan KS, Krishnamurthy SS. New initiators for the ring-opening thermal polymerization of hexachlorocyclotriphosphazene: synthesis of linear poly(dichlorophosphazene) in high yields. Macromolecules. 1987;20:1501–5.

Article  CAS  Google Scholar 

Sennett MS, Hagnauer GL, Singler RE, Davies G. Kinetics and mechanism of the boron trichloride catalyzed thermal ring-opening polymerization of hexachlorocyclotriphosphazene in 1,2,4-trichlorobenzene solution. Macromolecules. 1986;19:959–64.

Article  CAS  Google Scholar 

Scopelianos AG, Allcock HR. Notes polymerization of hexachlorocyclotriphosphazene in the presence of carbon disulfide. Macromolecules. 1987;20:432–3.

Article  CAS  Google Scholar 

Ogueri KS, Ogueri KS, Allcock HR, Laurencin CT. Polyphosphazene polymers: the next generation of biomaterials for regenerative engineering and therapeutic drug delivery. J Vac Sci Technol B. 2020;38:030801.

Article  CAS  Google Scholar 

Allcock HR, Crane CA, Morrissey CT, Nelson JM, Reeves SD, Honeyman CH, et al. “Living” cationic polymerization of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weights. Macromolecules. 1996;29:7740–7.

Article  CAS  Google Scholar 

Allcock HR, Reeves SD, Nelson JM, Crane CA, Manners I. Polyphosphazene block copolymers via the controlled cationic, ambient temperature polymerization of phosphoranimines. Macromolecules. 1997;30:2213–5.

Article  CAS  Google Scholar 

Honeyman CH, Manners I. Ambient temperature synthesis of poly(dichlorophosphazene) with molecular weight control. J Am Chem Soc. 1995;117:7035–6.

Article  CAS  Google Scholar 

Carriedo GA, García Alonso FJ, Gómez-Elipe P, Fidalgo JI, García Álvarez JL, Presa-Soto A. A simplified and convenient laboratory-scale preparation of 14N or 15N high molecular weight poly(dichlorophosphazene) directly from PCl5. Chem Eur J. 2003;9:3833–6.

Article  CAS  Google Scholar 

De Jaeger R, Gleriaby M. Poly(organophosphazene)s and related compounds: synthesis, properties and applications. Prog Polym Sci. 1998;23:179–276.

Article  Google Scholar 

Osada Y, Hashidzume M, Tsuchida E, Bell AT. Polymerization of phosphazene crystal by plasma exposure. Nature. 1980;286:693–4.

Article  CAS  Google Scholar 

Allcock HR, Morozowich NL. Bioerodible polyphosphazenes and their medical potential. Polym Chem. 2012;3:578–90.

Article  CAS  Google Scholar 

Allcock HR, Chen C. Polyphosphazenes: phosphorus in inorganic-organic polymers. J Org Chem. 2020;85:14286–97.

Article  CAS  Google Scholar 

Steinke JHG, Greenland BW, Johns S, Parker MP, Atkinson RCJ, Cade IA, et al. Robust and operationally simple synthesis of poly(bis(2,2,2- trifluoroethoxy) phosphazene) with controlled molecular weight, low PDI, and high conversion. ACS Macro Lett. 2014;3:548–51.

Article  CAS  Google Scholar 

Meng L, Xu C, Liu T, Li H, Lu Q, Long J. One-pot synthesis of highly cross-linked fluorescent polyphosphazene nanoparticles for cell imaging. Polym Chem. 2015;6:3155–63.

Article  CAS  Google Scholar 

Metinoğlu Örüm S, Süzen DY. One-pot synthesis and characterization of crosslinked polyphosphazene dopamine microspheres for controlled drug delivery applications. J Macromol Sci A. 2019;56:854–9.

Article  Google Scholar 

Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and polyphosphazenes for biomedical applications. Molecules. 2022;27:8117.

Article  CAS  Google Scholar 

Allen RW, Allcock HR. Conformational analysis of poly (alkoxy-and aryloxyphosphazenes). Macromolecules. 1976;9:956–60.

Article  CAS  Google Scholar 

Allcock HR, Allen RW, Meister J. Conformational analysis of poly(dihalophosphazenes). Macromolecules. 1976;9:950–5.

Article  CAS  Google Scholar 

Mark JE, Allcock HR, West R. Inorganic polymers. Oxford University Press; 2005.

Book  Google Scholar 

Allcock HR, McDonnell GS, Riding GS, Manners I. Influence of different organic side groups on the thermal behaviour of polyphosphazenes: random chain cleavage, depolymerization and pyrolytic cross-linking. Chem Mater. 1990;2:425–32.

Article  CAS  Google Scholar 

Allcock HR, Krause WE. Polyphosphazenes with adamantyl side groups. Macromolecules. 1997;30:5683–7.

Article  CAS  Google Scholar 

Allcock HR, Connolly MS, Sisko JT, Al-Shali S. Effects of organic side group structures on the properties of poly(organophosphazenes). Macromolecules. 1988;21:323–34.

Article  CAS  Google Scholar 

Allcock HR. Poly(organophosphazenes)—unusual new high polymers. Angew Chem. 1977;16:147–56.

Article  Google Scholar 

Boileau S, Illy N. Activation in anionic polymerization: why phosphazene bases are very exciting promoters. Prog Polym Sci. 2011;36:1132–51.

Article  CAS  Google Scholar 

Allcock HR, Wagner LJ, Levin ML, Greigger PP. Synthesis and structure of transition-metal-bound phosphazenes derived from phosphazene anions. Organometallics. 1986;5:2244–50.

Article  CAS  Google Scholar 

Allcock HR, Allen RW, O’Brien JP. Synthesis of platinum derivatives of polymeric and cyclic phosphazenes. J Am Chem Soc. 1977;99:3984–7.

Article  CAS  Google Scholar 

O’Brien JP, Ferrar WT, Allcock HR. Photolysis of poly(alkoxy-and aryloxyphosphazenes), [NP(OR)2]n1, 2. Macromolecules. 1979;12:108–13.

Article  Google Scholar 

Zheng C, Qiu L, Yao X, Zhu K. Novel micelles from graft polyphosphazenes as potential anti-cancer drug delivery systems: drug encapsulation and in vitro evaluation. Int J Pharm. 2009;373:133–40.

Article  CAS  Google Scholar 

Rothemund S, Teasdale I. Preparation of polyphosphazenes: a tutorial review. Chem Soc Rev. 2016;45:5200–15.

Article  CAS  Google Scholar 

Kumbar SG, Bhattacharyya S, Nukavarapu SP, Khan YM, Nair LS, Laurencin CT. In vitro and in vivo characterization of biodegradable poly(organophosphazenes) for biomedical applications. J Inorg Organomet Polym Mater. 2006;16:365–85.

Article  CAS  Google Scholar 

Allcock HR, Pucher SR, Scopelianos AG. Synthesis of poly(organophosphazenes) with glycolic acid ester and lactic acid ester side groups: prototypes for new bioerodible polymers. Macromolecules. 1994;27:1–4.

Article  CAS  Google Scholar 

Andrianov AK, Marin A, Chen J. Synthesis, properties, and biological activity of Poly[di(sodium carboxylatoethylphenoxy)phosphazene]. Biomacromol. 2006;7:394–9.

Article  CAS  Google Scholar 

Andrianov AK, Svirkin YY, LeGolvan MP. Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromol. 2004;5:1999–2006.

Article  CAS  Google Scholar 

Allcock HR, Fuller TJ, Matsumura K. Hydrolysis pathways for aminophosphazenes. Inorg Chem. 1982;21:515–21.

Article  CAS  Google Scholar 

Allcock HR, Fuller TJ, Mack DP, Matsumura K, Smeltz KM. Synthesis of poly[(amino acid alkyl ester)phosphazene]. J Am Chem Soc. 1967;10:824–30.

Google Scholar 

Ogueri KS, Escobar Ivirico JL, Li Z, Blumenfield RH, Allcock HR, Laurencin CT. Synthesis, physicochemical analysis, and side group optimization of degradable dipeptide-based polyphosphazenes as potential regenerative biomaterials. ACS Appl Polym Mater. 2019;1:1568–78.

Article  CAS  Google Scholar 

Weikel AL, Krogman NR, Nguyen NQ, Nair LS, Laurencin CT, Allcock HR. Polyphosphazenes that contain dipeptide side groups: synthesis, characterization, and sensitivity to hydrolysis. Macromolecules. 2009;42:636–9.

Article  CAS  Google Scholar 

Schacht E, Vandorpe J, Dejardin S, Lemmouchi Y, Seymour L. Biomedical applications of degradable polyphosphazenes. Biotechnol Bioeng. 1996;52:102–8.

Article  CAS 

Comments (0)

No login
gif