Sun, L. The update of fetal growth restriction associated with biomarkers. Matern. Fetal Med. 4, 210–217 (2022).
Harding, R. et al. The compromised intra-uterine environment: implications for future lung health. Clin. Exp. Pharm. Physiol. 27, 965–974 (2000).
Henriksen, T. & Clausen, T. The fetal origins hypothesis: placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstet. Gynecol. Scand. 81, 112–114 (2002).
Gagnon, R. Placental Insufficiency and Its Consequences. Eur. J. Obstet. Gynecol. Reprod. Biol. 110, S99–S107 (2003).
Mazarico, E., Molinet-Coll, C., Martinez-Portilla, R. J. & Figueras, F. Heparin therapy in placental insufficiency: systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 99, 167–174 (2020).
Chen, C. M., Wang, L. F. & Su, B. Effects of maternal undernutrition during late gestation on the lung surfactant system and morphometry in rats. Pediatr. Res. 56, 329–335 (2004).
Article PubMed CAS Google Scholar
Huang, L. T., Chou, H. C., Lin, C. M. & Chen, C. M. Uteroplacental insufficiency alters the retinoid pathway and lung development in newborn rats. Pediatr. Neonatol. 57, 508–514 (2016).
Kotecha, S. J. et al. Spirometric lung function in school-age children: effect of intrauterine growth retardation and catch-up growth. Am. J. Respir. Crit. Care Med. 181, 969–974 (2010).
Article PubMed PubMed Central Google Scholar
Pike, K., Jane Pillow, J. & Lucas, J. S. Long term respiratory consequences of intrauterine growth restriction. Semin. Fetal Neonatal Med. 17, 92–98 (2012).
Arigliani, M. et al. Lung function between 8 and 15 years of age in very preterm infants with fetal growth restriction. Pediatr. Res. 90, 657–663 (2021).
den Dekker, H. T., Jaddoe, V. W. V., Reiss, I. K., de Jongste, J. C. & Duijts, L. Fetal and infant growth patterns and risk of lower lung function and asthma. The Generation R Study. Am. J. Respir. Crit Care Med 197, 183–192 (2018).
Jordan, B. K. & McEvoy, C. T. Trajectories of lung function in infants and children: setting a course for lifelong lung health. Pediatrics 146, e20200417 (2020).
Wu, G., Bazer, F. W., Wallace, J. M. & Spencer, T. E. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337 (2006).
Article PubMed CAS Google Scholar
Pierro, M. et al. Association of the dysfunctional placentation endotype of prematurity with bronchopulmonary dysplasia: a systematic review, meta-analysis and meta-regression. Thorax 77, 268–275 (2022).
Torchin, H. et al. Placental complications and Bronchopulmonary Dysplasia: Epipage-2 Cohort Study. Pediatrics 137, e20152163 (2016).
Article PubMed PubMed Central Google Scholar
Sharma, D., Shastri, S. & Sharma, P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 10, 67–83 (2016).
Article PubMed PubMed Central Google Scholar
Rosenberg, A. The Iugr Newborn. Semin. Perinatol. 32, 219–224 (2008).
Kowalski, T. J., Wu, G. & Watford, M. Rat Adipose tissue amino acid metabolism in vivo as assessed by miodialysis and arteriovenous techniques. Am. J. Physiol. 273, E613–E622 (1997).
Ali Assad, N. & Sood, A. Leptin, Adiponectin and pulmonary diseases. Biochimie 94, 2180–2189 (2012).
Article PubMed CAS Google Scholar
Jutant, E. M., Tu, L., Humbert, M., Guignabert, C. & Huertas, A. The thousand faces of leptin in the lung. Chest 159, 239–248 (2021).
Article PubMed CAS Google Scholar
Shin, J. H., Kim, J. H., Lee, W. Y. & Shim, J. Y. The expression of Adiponectin receptors and the effects of Adiponectin and Leptin on airway smooth muscle cells. Yonsei Med J. 49, 804–810 (2008).
Article PubMed PubMed Central CAS Google Scholar
Otero, M. et al. Leptin: A metabolic hormone that functions like a proinflammatory Adipokine. Drug N. Perspect. 19, 21–26 (2006).
Iikuni, N., Lam, Q. L., Lu, L., Matarese, G. & La Cava, A. Leptin and Inflammation. Curr. Immunol. Rev. 4, 70–79 (2008).
Article PubMed PubMed Central CAS Google Scholar
Lanier, V. et al. Leptin-induced Transphosphorylation of vascular endothelial growth factor receptor increases notch and stimulates endothelial cell angiogenic transformation. Int J. Biochem. Cell Biol. 79, 139–150 (2016).
Article PubMed PubMed Central CAS Google Scholar
Chao de la Barca, J. M. et al. A metabolomic profiling of intra-uterine growth restriction in placenta and cord blood points to an impairment of lipid and energetic metabolism. Biomedicines 10, 1411 (2022).
Article PubMed PubMed Central CAS Google Scholar
Stingl, H., Raffesberg, W., Nowotny, P., Waldhäusl, W. & Roden, M. Reduction of plasma leptin concentrations by arginine but not lipid infusion in humans. Obes. Res. 10, 1111–1119 (2002).
Article PubMed CAS Google Scholar
Vernooy, J. H. et al. Leptin as regulator of pulmonary immune responses: involvement in respiratory diseases. Pulm. Pharm. Ther. 26, 464–472 (2013).
Malli, F., Papaioannou, A. I., Gourgoulianis, K. I. & Daniil, Z. The role of Leptin in the respiratory system: an overview. Respir. Res. 11, 152 (2010).
Article PubMed PubMed Central Google Scholar
Attig, L., Larcher, T., Gertler, A., Abdennebi-Najar, L. & Djiane, J. Postnatal Leptin is necessary for maturation of numerous organs in newborn rats. Organogenesis 7, 88–94 (2011).
Article PubMed PubMed Central Google Scholar
Kirwin, S. M. et al. Leptin enhances lung maturity in the fetal rat. Pediatr. Res. 60, 200–204 (2006).
Article PubMed CAS Google Scholar
Chen, H. et al. Leptin promotes fetal lung maturity and upregulates Sp-a Expression in Pulmonary Alveoli Type-Ii epithelial cells involving Ttf-1 activation. PLoS One 8, e69297 (2013).
Article PubMed PubMed Central CAS Google Scholar
De Blasio, M. J. et al. Leptin matures aspects of lung structure and function in the Ovine Fetus. Endocrinology 157, 395–404 (2016).
Huang, K. et al. Effects of Leptin deficiency on postnatal lung development in mice. J. Appl. Physiol. 105, 249–259 (2008).
Article PubMed PubMed Central CAS Google Scholar
Yuliana, M. E., Huang, Z. H., Chou, H. C. & Chen, C. M. Effects of Uteroplacental insufficiency on growth-restricted rats with altered lung development: a metabolomic analysis. Front. Pediatr. 10, 952313 (2022).
Article PubMed PubMed Central Google Scholar
Yang, Y. S. H., Chou, H. C., Liu, Y. R. & Chen, C. M. Uteroplacental insufficiency causes microbiota disruption and lung development impairment in growth-restricted newborn rats. Nutrients 14, 4388 (2022).
Article PubMed PubMed Central CAS Google Scholar
Huang, L. T., Chou, H. C., Lin, C. M., Yeh, T. F. & Chen, C. M. Maternal Nicotine exposure exacerbates neonatal hyperoxia-induced lung fibrosis in rats. Neonatology 106, 94–101 (2014).
Article PubMed CAS Google Scholar
Thaete, L. G., Ahnen, D. J. & Malkinson, A. M. Proliferating Cell Nuclear Antigen (Pcna/Cyclin) immunocytochemistry as a labeling index in mouse lung tissues. Cell Tissue Res. 256, 167–173 (1989).
Article PubMed CAS Google Scholar
Agard, C. et al. Protective role of the antidiabetic drug metformin against chronic experimental pulmonary hypertension. Br. J. Pharm. 158, 1285–1294 (2009).
Obilor, E. I. & Amadi, E.C. Test for significance of Pearson’s correlation coefficient (r). Int. J. Innov. Math. Stat. Energy Policies 6, 11–23 (2018).
Joss-Moore, L. et al. Intrauterine growth restriction transiently delays alveolar formation and disrupts retinoic acid receptor expression in the lung of female rat pups. Pediatr. Res. 73, 612–620
Comments (0)