European Association For The Study Of The Liver. (2018). EASL clinical practice guidelines: Management of hepatocellular carcinoma. Journal of Hepatology, 69(1), 182–236. https://doi.org/10.1016/j.jhep.2018.03.019
Vogel, A., Meyer, T., Sapisochin, G., Salem, R., & Saborowski, A. (2022). Hepatocellular carcinoma. The Lancet, 400(10360), 1345–1362. https://doi.org/10.1016/S0140-6736(22)01200-4
Tilg, H., Adolph, T. E., Dudek, M., & Knolle, P. (2021). Non-alcoholic fatty liver disease: The interplay between metabolism, microbes and immunity. Nature Metabolism, 3(12), 1596–1607. https://doi.org/10.1038/s42255-021-00501-9
Article CAS PubMed Google Scholar
Muir, K., Hazim, A., He, Y., Peyressatre, M., Kim, D. Y., Song, X., & Beretta, L. (2013). Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Research, 73(15), 4722–4731. https://doi.org/10.1158/0008-5472.CAN-12-3797
Article CAS PubMed Google Scholar
Wang, M., Han, J., Xing, H., Zhang, H., Li, Z., Liang, L., Li, C., Dai, S., Wu, M., Shen, F., & Yang, T. (2016). Dysregulated fatty acid metabolism in hepatocellular carcinoma. Hepatic Oncology, 3(4), 241–251. https://doi.org/10.2217/hep-2016-0012
Calvisi, D. F., Wang, C., Ho, C., Ladu, S., Lee, S. A., Mattu, S., Destefanis, G., Delogu, S., Zimmermann, A., Ericsson, J., Brozzetti, S., Staniscia, T., Chen, X., Dombrowski, F., & Evert, M. (2011). Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology, 140(3), 1071–1083. https://doi.org/10.1053/j.gastro.2010.12.006
Article CAS PubMed Google Scholar
Snaebjornsson, M. T., Janaki-Raman, S., & Schulze, A. (2020). Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer. Cell Metabolism, 31(1), 62–76. https://doi.org/10.1016/j.cmet.2019.11.010
Article CAS PubMed Google Scholar
Li, T., Weng, J., Zhang, Y., Liang, K., Fu, G., Li, Y., Bai, X., & Gao, Y. (2019). mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma. Cell Death & Disease, 10(8), 619. https://doi.org/10.1038/s41419-019-1828-2
Li, C., Yang, W., Zhang, J., Zheng, X., Yao, Y., Tu, K., & Liu, Q. (2014). SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. International Journal of Molecular Sciences, 15(5), 7124–7138. https://doi.org/10.3390/ijms15057124
Article CAS PubMed PubMed Central Google Scholar
Shimano, H. (2001). Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Progress in Lipid Research, 40(6), 439–452. https://doi.org/10.1016/S0163-7827(01)00010-8
Article CAS PubMed Google Scholar
Jeon, Y. G., Kim, Y. Y., Lee, G., & Kim, J. B. (2023). Physiological and pathological roles of lipogenesis. Nature Metabolism, 5(5), 735–759. https://doi.org/10.1038/s42255-023-00786-y
Article CAS PubMed Google Scholar
Soyal, S. M., Nofziger, C., Dossena, S., Paulmichl, M., & Patsch, W. (2015). Targeting SREBPs for treatment of the metabolic syndrome. Trends in Pharmacological Sciences, 36(6), 406–416. https://doi.org/10.1016/j.tips.2015.04.010
Article CAS PubMed Google Scholar
Zhao, Q., Lin, X., & Wang, G. (2022). Targeting SREBP-1-mediated lipogenesis as potential strategies for cancer. Frontiers in Oncology, 12, 952371. https://doi.org/10.3389/fonc.2022.952371
Article CAS PubMed PubMed Central Google Scholar
Athanikar, J. N., & Osborne, T. F. (1998). Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 4935–4940. https://doi.org/10.1073/pnas.95.9.4935
Article CAS PubMed PubMed Central Google Scholar
Amemiya-Kudo, M., Shimano, H., Yoshikawa, T., Yahagi, N., Hasty, A. H., Okazaki, H., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., Osuga, J., Harada, K., Gotoda, T., Sato, R., Kimura, S., Ishibashi, S., & Yamada, N. (2000). Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. Journal of Biological Chemistry, 275(40), 31078–31085. https://doi.org/10.1074/jbc.M005353200
Article CAS PubMed Google Scholar
Horton, J. D., Goldstein, J. L., & Brown, M. S. (2002). SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of Clinical Investigation, 109(9), 1125–1131. https://doi.org/10.1172/JCI15593
Article CAS PubMed PubMed Central Google Scholar
Shimano, H., Horton, J. D., Shimomura, I., Hammer, R. E., Brown, M. S., & Goldstein, J. L. (1997). Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. The Journal of Clinical Investigation, 99(5), 846–854. https://doi.org/10.1172/JCI119248
Article CAS PubMed PubMed Central Google Scholar
Foretz, M., Guichard, C., Ferre, P., & Foufelle, F. (1999). Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12737–12742. https://doi.org/10.1073/pnas.96.22.12737
Article CAS PubMed PubMed Central Google Scholar
Shechter, I., Dai, P., Huo, L., & Guan, G. (2003). IDH1 gene transcription is sterol regulated and activated by SREBP-1a and SREBP-2 in human hepatoma HepG2 cells: Evidence that IDH1 may regulate lipogenesis in hepatic cells. Journal of Lipid Research, 44(11), 2169–2180. https://doi.org/10.1194/jlr.M300285-JLR200
Article CAS PubMed Google Scholar
Lee, J. N., Song, B., DeBose-Boyd, R. A., & Ye, J. (2006). Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. Journal of Biological Chemistry, 281(51), 39308–39315. https://doi.org/10.1074/jbc.M608999200
Article CAS PubMed Google Scholar
Liu, T. F., Tang, J. J., Li, P. S., Shen, Y., Li, J. G., Miao, H. H., Li, B. L., & Song, B. L. (2012). Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metabolism, 16(2), 213–225. https://doi.org/10.1016/j.cmet.2012.06.014
Article CAS PubMed Google Scholar
Wang, X., Sato, R., Brown, M. S., Hua, X., & Goldstein, J. L. (1994). SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell, 77(1), 53–62. https://doi.org/10.1016/0092-8674(94)90234-8
Article CAS PubMed Google Scholar
Radhakrishnan, A., Ikeda, Y., Kwon, H. J., Brown, M. S., & Goldstein, J. L. (2007). Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Oxysterols block transport by binding to Insig. Proceedings of the National Academy of Sciences of the United States of America, 104(16), 6511–6518. https://doi.org/10.1073/pnas.0700899104
Article CAS PubMed PubMed Central Google Scholar
Adams, C. M., Reitz, J., De Brabander, J. K., Feramisco, J. D., Li, L., Brown, M. S., & Goldstein, J. L. (2004). Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. The Journal of Biological Chemistry, 279(50), 52772–52780. https://doi.org/10.1074/jbc.M410302200
Article CAS PubMed Google Scholar
Moon, Y. A., Hammer, R. E., & Horton, J. D. (2009). Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. Journal of Lipid Research, 50(3), 412–423. https://doi.org/10.1194/jlr.M800383-JLR200
Article CAS PubMed PubMed Central Google Scholar
Williams, K. J., Argus, J. P., Zhu, Y., Wilks, M. Q., Marbois, B. N., York, A. G., Kidani, Y., Pourzia, A. L., Akhavan, D., Lisiero, D. N., Komisopoulou, E., Henkin, A. H., Soto, H., Chamberlain, B. T., Vergnes, L., Jung, M. E., Torres, J. Z., Liau, L. M., Christofk, H. R., et al. (2013). An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Research, 73(9), 2850–2862. https://doi.org/10.1158/0008-5472.CAN-13-0382-T
Article CAS PubMed PubMed Central Google Scholar
Liang, D., Minikes, A. M., & Jiang, X. (2022). Ferroptosis at the intersection of lipid metabolism and cellular signaling. Molecular Cell, 82(12), 2215–2227. https://doi.org/10.1016/j.molcel.2022.03.022
Article CAS PubMed PubMed Central Google Scholar
Zhang, M., Wei, T., Zhang, X., & Guo, D. (2022). Targeting lipid metabolism reprogramming of immunocytes in response to the tumor microenvironment stressor: A potential approach for tumor therapy. Frontiers in Immunology, 13, 937406. https://doi.org/10.3389/fimmu.2022.937406
Article CAS PubMed PubMed Central Google Scholar
Park, H. Y., Kang, H. S., & Im, S. S. (2018). Recent insight into the correlation of SREBP-mediated lipid metabolism and innate immune response. The Journal of Molecular Endocrinology, 61(3), R123–r131. https://doi.org/10.1530/jme-17-0289
Article CAS PubMed Google Scholar
Dyall, S. C., Balas, L., Bazan, N. G., Brenna, J. T., Chiang, N., da Costa Souza, F., Dalli, J., Durand, T., Galano, J. M., Lein, P. J., Serhan, C. N., & Taha, A. Y. (2022). Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Progress in Lipid Research, 86, 101165. https://doi.org/10.1016/j.plipres.2022.101165
Comments (0)