Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576:51–60.
Article CAS PubMed Google Scholar
Goyal R, Singhal M, Jialal I (2023) Type 2 diabetes. StatPearls. Treasure Island: StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK513253/. Accessed 22 Sept, 2023
Ruiz-Roso MB, Knott-Torcal C, Matilla-Escalante DC, Garcimartín A, Sampedro-Nuñez MA, Dávalos A, et al. COVID-19 lockdown and changes of the dietary pattern and physical activity habits in a cohort of patients with Type 2 diabetes mellitus. Nutrients. 2020;12:2327.
Article CAS PubMed PubMed Central Google Scholar
Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol. 2021. https://doi.org/10.3389/fendo.2021.706978.
Gholamaliei B, Karimi-Shahanjarini A, Roshanaei G, Rezapour-Shahkolaei F. Medication adherence and its related factors in patients with type II diabetes. J Educ Community Health. 2016;2:3–12.
Unwin D, Delon C, Unwin J, Tobin S, Taylor R. What predicts drug-free type 2 diabetes remission? Insights from an 8-year general practice service evaluation of a lower carbohydrate diet with weight loss. BMJ Nutr Prev Health. 2023;6:46–55.
Article PubMed PubMed Central Google Scholar
Ricci M, Mancebo-Sevilla JJ, Cobos Palacios L, Sanz-Cánovas J, López-Sampalo A, Hernández-Negrin H, et al. Remission of type 2 diabetes: a critical appraisal. Front Endocrinol. 2023. https://doi.org/10.3389/fendo.2023.1125961.
Chen S, Gan D, Lin S, Zhong Y, Chen M, Zou X, et al. Metformin in aging and aging-related diseases: clinical applications and relevant mechanisms. Theranostics. 2022;12:2722–40.
Article CAS PubMed PubMed Central Google Scholar
Huang Q, Huang Y, Liu J. Mesenchymal stem cells: an excellent candidate for the treatment of diabetes mellitus. Int J Endocrinol. 2021;2021: e9938658.
Feier AM, Portan D, Manu DR, Kostopoulos V, Kotrotsos A, Strnad G, et al. Primary MSCs for personalized medicine: ethical challenges, isolation and biocompatibility evaluation of 3D electrospun and printed scaffolds. Biomedicines. 2022;10:1563.
Article CAS PubMed PubMed Central Google Scholar
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7:272.
Article PubMed PubMed Central Google Scholar
Saha A, Samadder A, Nandi S. Stem cell therapy in combination with naturopathy: current progressive management of diabetes and associated complications. Curr Top Med Chem. 2023;23:649–89.
Article CAS PubMed Google Scholar
Yang X, Xu Z, Zhang C, Cai Z, Zhang J. Metformin, beyond an insulin sensitizer, targeting heart and pancreatic β cells. Biochim Biophys Acta BBA-Mol Basis Dis. 2017;1863:1984–90.
Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol—Endocrinol Metab. 2019;316:E268-85.
Article CAS PubMed PubMed Central Google Scholar
Vial G, Detaille D, Guigas B. Role of mitochondria in the mechanism(s) of action of metformin. Front Endocrinol. 2019. https://doi.org/10.3389/fendo.2019.00294.
Bhansali S, Bhansali A, Dutta P, Walia R, Dhawan V. Metformin upregulates mitophagy in patients with T2DM: a randomized placebo-controlled study. J Cell Mol Med. 2020;24:2832–46.
Article CAS PubMed PubMed Central Google Scholar
Oh YS, Bae GD, Baek DJ, Park E-Y, Jun H-S. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front Endocrinol. 2018;0:384.
Kim HI, Lee JS, Kwak BK, Hwang WM, Kim MJ, Kim Y-B, et al. Metformin ameliorates lipotoxic β-cell dysfunction through a concentration-dependent dual mechanism of action. Diabetes Metab J. 2019;43:854–66.
Article PubMed PubMed Central Google Scholar
Moon JS, Karunakaran U, Elumalai S, Lee I-K, Lee HW, Kim Y-W, et al. Metformin prevents glucotoxicity by alleviating oxidative and ER stress–induced CD36 expression in pancreatic beta cells. J Diabetes Complicat. 2017;31:21–30.
Bagheri M, Mostafavinia A, Abdollahifar M-A, Amini A, Ghoreishi SK, Chien S, et al. Combined effects of metformin and photobiomodulation improve the proliferation phase of wound healing in type 2 diabetic rats. Biomed Pharmacother. 2020;123: 109776.
Article CAS PubMed Google Scholar
Ochoa-Gonzalez F, Cervantes-Villagrana AR, Fernandez-Ruiz JC, Nava-Ramirez HS, Hernandez-Correa AC, Enciso-Moreno JA, et al. Metformin induces cell cycle arrest, reduced proliferation, wound healing impairment in vivo and is associated to clinical outcomes in diabetic foot ulcer patients. PLOS ONE. 2016;11: e0150900.
Article PubMed PubMed Central Google Scholar
Han X, Tao Y, Deng Y, Yu J, Sun Y, Jiang G. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol Med Rep. 2017;16:8691–8.
Article CAS PubMed PubMed Central Google Scholar
Lazarus G, Suhardi IP, Wiyarta E, Rasyidah RA, Barliana JD. Is there a need to reconsider the use of metformin in COVID-19 patients with type 2 diabetes mellitus? Int J Diabetes Dev Ctries. 2021;41:377–82.
Article CAS PubMed Google Scholar
Scheen AJ. Metformin and COVID-19: from cellular mechanisms to reduced mortality. Diabetes Metab. 2020;46:423–6.
Article CAS PubMed PubMed Central Google Scholar
Hieronymus L, Griffin S. Role of amylin in type 1 and type 2 diabetes. Diabetes Educ. 2015;41:47S-56S.
Drug Approval Package: Symlin (Pramlintide Acetate) NDA #021332. 2021. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21-332_Symlin.cfm. Accessed 28 Aug 2021
Herrmann K, Zhou M, Wang A, de Bruin TWA. Cardiovascular safety assessment of pramlintide in type 2 diabetes: results from a pooled analysis of five clinical trials. Clin Diabetes Endocrinol. 2016;2:12.
Boyle CN, Lutz TA, Le Foll C. Amylin—its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab. 2018;8:203–10.
Article CAS PubMed Google Scholar
Nascimento CVMF, Sinezia C, Sisnande T, Lima LMTR, Lacativa PGS. BZ043, a novel long-acting amylin analog, reduces gastric emptying, food intake, glycemia and insulin requirement in streptozotocin-induced diabetic rats. Peptides. 2019;114:44–9.
Article CAS PubMed Google Scholar
Gao X, Cai X, Yang W, Chen Y, Han X, Ji L. Meta-analysis and critical review on the efficacy and safety of alpha-glucosidase inhibitors in Asian and non-Asian populations. J Diabetes Investig. 2018;9:321–31.
Article CAS PubMed Google Scholar
Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM. The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome. mSphere. 2019;4:e00528–18.
Zhu Q, Tong Y, Wu T, Li J, Tong N. Comparison of the hypoglycemic effect of acarbose monotherapy in patients with type 2 diabetes mellitus consuming an eastern or western diet: a systematic meta-analysis. Clin Ther. 2013;35:880–99.
Wang J-S, Huang C-N, Hung Y-J, Kwok C-F, Sun J-H, Pei D, et al. Acarbose plus metformin fixed-dose combination outperforms acarbose monotherapy for type 2 diabetes. Diabetes Res Clin Pract. 2013;102:16–24.
Article CAS PubMed Google Scholar
Holmbäck U, Forslund A, Grudén S, Alderborn G, Söderhäll A, Hellström PM, et al. Effects of a novel combination of orlistat and acarbose on tolerability, appetite, and glucose metabolism in persons with obesity. Obes Sci Pract. 2020;6:313–23.
Article PubMed PubMed Central Google Scholar
Zhou D, Chen L, Mou X. Acarbose ameliorates spontaneous type-2 diabetes in db/db mice by inhibiting PDX-1 methylation. Mol Med Rep. 2021;23:72.
Article CAS PubMed Google Scholar
Han X, Deng Y, Yu J, Sun Y, Ren G, Cai J, et al. Acarbose accelerates wound healing via Akt/eNOS signaling in db/db mice. Oxid Med Cell Longev. 2017;2017:7809581.
Article PubMed PubMed Central Google Scholar
Sugimoto S, Nakajima H, Kosaka K, Hosoi H. Review: Miglitol has potential as a therapeutic drug against obesity. Nutr Metab. 2015;12:51.
Collins L, Costello RA. Glucagon-like Peptide-1 Receptor Agonists. StatPearls. Treasure Island: StatPearls Publishing; 2022. http://www.ncbi.nlm.nih.gov/books/NBK551568/. Accessed 27 Mar 2022
Drug Approval Package: Byetta (Exenatide) NDA #021773. 2021. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021773_byettatoc.cfm. Accessed 9 Sept 2021
Drug Approval Package: Victoza (Liraglutide [rDNA]) Injection. 2022. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022341s000TOC.cfm. Accessed 27 Mar 2022
Ozempic (semaglutide) Injection [Internet]. 2022. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209637Orig1s000TOC.cfm. Accessed 27Mar 2022
Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud RDS. 2014;11:202–30.
Carris NW, Taylor JR, Gums JG. Combining a GLP-1 receptor agonist and basal insulin: study evidence and practical considerations. Drugs. 2014;74:2141–52.
Article CAS PubMed Google Scholar
Joubert M, Opigez V, Pavlikova B, Paul LPS, Jeandidier N, Briant AR, et al. Efficacy and safety of exenatide as add-on therapy for patients with type 2 diabetes with an intensive insulin regimen: a randomized double-blind trial. Diabetes Obes Metab. 2021;23:374–81.
Comments (0)