WHO. Noncommunicable diseases. 2022. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022;185:1630–45 (Elsevier B.V).
Article PubMed PubMed Central Google Scholar
Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D. Regulation of SIRT1 and its roles in inflammation. Front Immunol. 2022;13:1–16. https://doi.org/10.3389/fimmu.2022.831168.
Rinninella E, Cintoni M, Raoul P, Lopetuso LR, Scaldaferri F, Pulcini G, Miggiano GAD, Gasbarrini A, Mele MC. Food components and dietary habits: keys for a healthy gut microbiota composition. Nutrients. 2019;11(10):2393. https://doi.org/10.3390/nu11102393.
Article CAS PubMed PubMed Central Google Scholar
Cena H, Calder PC. Defining a healthy diet: evidence for the role of contemporary dietary patterns in health and disease. Nutrients. 2020;12(2):334. https://doi.org/10.3390/nu12020334.
Minelli P, Montinari MR. The Mediterranean diet and cardioprotection: historical overview and current research. J Multidiscip Healthc. 2019;12:805–15. https://doi.org/10.2147/JMDH.S219875.
Article PubMed PubMed Central Google Scholar
Santhakumar AB, Battino M, Alvarez-Suarez JM. Dietary polyphenols: structures, bioavailability and protective effects against atherosclerosis. Food Chem Toxicol. 2018;113. https://doi.org/10.1016/j.fct.2018.01.022.
Riccardi G, Giosuè A, Calabrese I, Vaccaro O. Dietary recommendations for prevention of atherosclerosis. Cardiovasc Res. 2022;118(5):1188–204. https://doi.org/10.1093/cvr/cvab173.
Article CAS PubMed Google Scholar
Teodoro AJ. Bioactive compounds of food: their role in the prevention and treatment of diseases. Oxidative Med Cell Longev. 2019;2019:3765986. https://doi.org/10.1155/2019/3765986.
Kang H, Kim B. Bioactive compounds as inhibitors of inflammation, oxidative stress and metabolic dysfunctions via regulation of cellular redox balance and histone acetylation state. Foods. 2023;12(5):925. https://doi.org/10.3390/foods12050925.
Article CAS PubMed PubMed Central Google Scholar
Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, Alshabrmi FM, Palai S, Deb PK, Devi R. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action. Front Pharmacol. 2022;13:806470. https://doi.org/10.3389/fphar.2022.806470.
Article CAS PubMed PubMed Central Google Scholar
Vlčko T, Rathod NB, Kulawik P, Ozogul Y, Ozogul F. The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. Adv Food Nutr Res. 2022;1(102):275–339.
Tang H, Li K, Zhang S, Lan H, Liang L, Huang C, et al. Inhibitory effect of paeonol on apoptosis, oxidative stress, and inflammatory response in human umbilical vein endothelial cells induced by high glucose and palmitic acid induced through regulating SIRT1/FOXO3a/NF-κB pathway. J Interferon Cytokine Res. 2021;41(3):111–24.
Article CAS PubMed Google Scholar
KP AD, Shimoga Janakirama AR, Martin A. SIRT1 activation by taurine: in vitro evaluation, molecular docking and molecular dynamics simulation studies. J Nutr Biochem. 2022;102. https://doi.org/10.1016/j.jnutbio.2022.108948.
Xiong Y, Wang HX, Yan H, Zhu SL, Guo SW, Peng WJ, et al. Rutaecarpine prevents high glucose-induced endothelial cell senescence through transient receptor potential vanilloid subtype 1/ SIRT1 pathway. J Cardiovasc Pharmacol. 2022;79(1):e129–37.
Article CAS PubMed Google Scholar
Du C, Lin X, Xu W, Zheng F, Cai J, Yang J, et al. Sulfhydrated sirtuin-1 increasing its deacetylation activity is an essential epigenetics mechanism of anti-atherogenesis by hydrogen sulfide. Antioxid Redox Signal. 2019;30(2):184–97.
Article CAS PubMed Google Scholar
Luo Y, Lu S, Ai Q, Zhou P, Qin M, Sun G, et al. SIRT1/AMPK and Akt/eNOS signaling pathways are involved in endothelial protection of total aralosides of Aralia elata (Miq) Seem against high-fat diet-induced atherosclerosis in ApoE−/− mice. Phytother Res. 2019;33(3):768–78.
Article CAS PubMed Google Scholar
Abedimanesh N, Motlagh B, Abedimanesh S, Bathaie SZ, Separham A, Ostadrahimi A. Effects of crocin and saffron aqueous extract on gene expression of SIRT1, AMPK, LOX1, NF-κB, and MCP-1 in patients with coronary artery disease: a randomized placebo-controlled clinical trial. Phytother Res. 2020;34(5):1114–22.
Article CAS PubMed Google Scholar
He X, Zheng J, Liu C. Low serum level of sirtuin 1 predicts coronary atherosclerosis plaques during computed tomography angiography among an asymptomatic cohort. Coron Artery Dis. 2019;30(8):621–5.
Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 activation by natural phytochemicals: An overview. Front Pharmacol. 2020;11:1225. https://doi.org/10.3389/fphar.2020.01225.
Article CAS PubMed PubMed Central Google Scholar
Zhang F, Feng J, Zhang J, Kang X, Qian D. Quercetin modulates AMPK/SIRT1/NF-κB signaling to inhibit inflammatory/oxidative stress responses in diabetic high fat diet-induced atherosclerosis in the rat carotid artery. Exp Ther Med. 2020;20(6):1–1.
Jiang YH, Jiang LY, Wang YC, Ma DF, Li X. Quercetin attenuates atherosclerosis via modulating oxidized LDL-induced endothelial cellular senescence. Front Pharmacol. 2020;11(April):1–11.
Li C, Jiang S, Wang H, Wang Y, Han Y, Jiang J. Berberine exerts protective effects on cardiac senescence by regulating the Klotho/SIRT1 signaling pathway. Biomed Pharmacother. 2022;1:151.
Wu YZ, Zhang L, Wu ZX, Shan TT, Xiong C. Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxidative Med Cell Longev. 2019;2019:2150394. https://doi.org/10.1155/2019/2150394.
Yan L, Jia Q, Cao H, Chen C, Xing S, Huang Y, et al. Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE−/− mice. Exp Ther Med. 2020;21(1):1–1.
Yang W, Tian ZK, Yang HX, Feng ZJ, Sun JM, Jiang H, et al. Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem Toxicol. 2019;1:134.
Takano K, Tatebe J, Washizawa N, Morita T. Curcumin inhibits age-related vascular changes in aged mice fed a high-fat diet. Nutrients. 2018;10(10):1476. https://doi.org/10.3390/nu10101476.
Article CAS PubMed PubMed Central Google Scholar
Ren B-C, Zhang Y-F, Liu S-S, Cheng X-J, Yang X, Cui X-G, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med. 2020;24(21):12355–67.
Article CAS PubMed PubMed Central Google Scholar
Ramírez-Zacarías JL, Castro-Muñozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry. 1992;97(6):493–7.
Chang HH, Chien CY, Chen KH, Huang SC, Chien CT. Catechins blunt the effects of oxLDL and its primary metabolite phosphatidylcholine hydroperoxide on endothelial dysfunction through inhibition of oxidative stress and restoration of eNOS in rats. Kidney Blood Press Res. 2018;42(5):919–32.
Zhou L, Long J, Sun Y, Chen W, Qiu R, Yuan D. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE−/− mice and inhibits the activation of CD4+ T cells. Nutr Metab. 2020;17(1):41. https://doi.org/10.1186/s12986-020-00461-z.
Hada Y, Uchida HA, Wada J. Fisetin attenuates lipopolysaccharide-induced inflammatory responses in macrophage. Biomed Res Int. 2021;2021 https://doi.org/10.1155/2021/5570885.
Matacchione G, Gurău F, Silvestrini A, Tiboni M, Mancini L, Valli D, et al. Anti-SASP and anti-inflammatory activity of resveratrol, curcumin and β-caryophyllene association on human endothelial and monocytic cells. Biogerontology. 2021;22(3):297–313.
Article CAS PubMed PubMed Central Google Scholar
Ramirez-Sanchez I, Mansour C, Navarrete-Yañez V, Ayala-Hernandez M, Guevara G, Castillo C, et al. (−)-Epicatechin induced reversal of endothelial cell aging and improved vascular function: underlying mechanisms. Food Funct. 2018;9(9):4802–13.
Article CAS PubMed PubMed Central Google Scholar
Farrokhi E, Ghatreh-Samani K, Salehi-Vanani N, Mahmoodi A. The effect of resveratrol on expression of matrix metalloproteinase 9 and its tissue inhibitors in vascular smooth muscle cells. ARYA Atheroscler. 2018;14(4):157–62.
PubMed PubMed Central Google Scholar
Hoseini A, Namazi G, Farrokhian A, Reiner Ž, Aghadavod E, Bahmani F, Asemi Z. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Funct. 2019;10(9):6042–51. https://doi.org/10.1039/c9fo01075k.
Gonçalinho GHF, Kuwabara KL, de Oliveira Faria NF, da Silva Goes MF, Roggerio A, Avakian SD, Strunz CMC, de Padua Mansur A. Sirtuin 1 and vascular function in healthy women and men: a randomized clinical trial comparing the effects of energy restriction and resveratrol. Nutrients. 2023;15(13):2949. https://doi.org/10.3390/nu15132949.
Article CAS PubMed PubMed Central Google Scholar
García-Martínez BI, Ruiz-Ramos M, Pedraza-Chaverri J, Santiago-Osorio E, Mendoza-Núñez VM. Effect of resveratrol on markers of oxidative stress and sirtuin 1 in elderly adults with type 2 diabetes. Int J Mol Sci. 2023;24(8):7422. https://doi.org/10.3390/ijms24087422.
Article CAS PubMed PubMed Central Google Scholar
Ghasemi E, Afzalpour ME, Nayebifar S. Combined high-intensity interval training and green tea supplementation enhance metabolic and antioxidant status in response to acute exercise in overweight women. The Journal of Physiological Sciences : JPS. 2020;70(1):31. https://doi.org/10.1186/s12576-020-00756-z.
Malhotra A, Bath S, Elbarbry F. An organ system approach to explore the antioxidative, anti-inflammatory, and cytoprotective actions of resveratrol, vol. 2015. Oxidative Medicine and Cellular Longevity: Hindawi Publishing Corporation; 2015.
Chachay VS, Kirkpatrick CMJ, Hickman IJ, Ferguson M, Prins JB, Martin JH. Resveratrol - pills to replace a healthy diet? Br J Clin Pharmacol. 2011;72:27–38.
Article CAS PubMed PubMed Central Google Scholar
Nallasamy P, Kang ZY, Sun X, Anandh Babu PV, Liu D, Jia Z. Natural compound resveratrol attenuates TNF-alpha-induced vascular dysfunction in mice and human endothelial cells: the involvement of the NF-κB signaling pathway. Int J Mol Sci. 2021;22(22):12486. https://doi.org/10.3390/ijms222212486.
Comments (0)