Xu J, Qin BK, Luan SJ, et al. Acid-labile poly(ethylene glycol) shell of hydrazone-containing biodegradable polymeric micelles facilitating anticancer drug delivery. J Bioact Compat Polym. 2018;33:119–33. https://doi.org/10.1177/0883911517715658.
Liu G-H, Chen T, Zhang X, et al. Small molecule inhibitors targeting the cancers. MedComm. 2022;3:e181. https://doi.org/10.1002/mco2.181.
Article CAS PubMed PubMed Central Google Scholar
Zhong L, Li YS, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021:6. https://doi.org/10.1038/s41392-021-00572-w.
Li XL, Yu N, Li J, et al. Novel “carrier-free” nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis. ACS Appl Mater Interfaces. 2020;12:10096–106. https://doi.org/10.1021/acsami.9b17363.
Article CAS PubMed Google Scholar
Li X, Li L, Huang Y, et al. Synergistic therapy of chemotherapeutic drugs and MTH1 inhibitors using a pH-sensitive polymeric delivery system for oral squamous cell carcinoma. Biomater Sci. 2017;5:2068–78. https://doi.org/10.1039/c7bm00395a.
Article CAS PubMed Google Scholar
Qiao L, Yang H, Gao S, et al. Research progress on self-assembled nanodrug delivery systems. J Mater Chem B. 2022;10:1908–22. https://doi.org/10.1039/d1tb02470a.
Article CAS PubMed Google Scholar
Lachota M, Siernicka M, Pilch Z, et al. Dasatinib effect on NK cells and anti-tumor immunity. Blood. 2018:132. https://doi.org/10.1182/blood-2018-99-111280.
Dai J, Zheng H, Huang X, et al. The increase on Th1 and CD8+T levels while a decrease on Treg level after dasatinib treatment indicate a better therapeutic response to dasatinib and deeper clinical remission in chronic myelogenous leukemia patients. Blood. 2019:134. https://doi.org/10.1182/blood-2019-128413.
Venkatesan P. Dasatinib in paediatric chronic myeloid leukaemias. Lancet Oncol. 2018;19:E188. https://doi.org/10.1016/s1470-2045(18)30196-7.
Chen X, Hu Z, Zhou L, et al. Self-assembling a natural small molecular inhibitor that shows aggregation-induced emission and potentiates antitumor efficacy. Nanoscale Horiz. 2021;6:33–42. https://doi.org/10.1039/d0nh00469c.
Article CAS PubMed Google Scholar
Zhang RH, Guo HY, Deng H, et al. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem. 2021;36:1165–97. https://doi.org/10.1080/14756366.2021.1931861.
Article CAS PubMed PubMed Central Google Scholar
Lipsky AH. N Lamanna, Novel combination approaches with targeted agents in frontline chronic lymphocytic leukemia. Cancer. 2023;129:18–31. https://doi.org/10.1002/cncr.34510.
Article CAS PubMed Google Scholar
Heyrman B, Granacher N, Wu KL. Single centre retrospective analysis: transformation of Waldenstrom’s macroglobulinemia to diffuse large B-cell lymphoma. Blood. 2020:136. https://doi.org/10.1182/blood-2020-135822.
Tacconi EMC, Badie S, De Gregoriis G, et al. Chlorambucil targets BRCA1/2-deficient tumours and counteracts PARP inhibitor resistance. EMBO Mol Med. 2019;11 https://doi.org/10.15252/emmm.201809982.
Wang H, Zhang Y, Zeng X, et al. A combined self-assembled drug delivery for effective anti-breast cancer therapy. Int J Nanomedicine. 2021:2373–88. https://doi.org/10.2147/IJN.S299681.
Huang L, Hu S, Y-n F, et al. Multicomponent carrier-free nanodrugs for cancer treatment. J Mater Chem B. 2022;10:9735–54. https://doi.org/10.1039/D2TB02025D.
Article CAS PubMed Google Scholar
Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6. https://doi.org/10.1158/0008-5472.CAN-09-1947.
Article CAS PubMed Google Scholar
Dai W, Wang X, Song G, et al. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev. 2017;115:23–45. https://doi.org/10.1016/j.addr.2017.03.001.
Article CAS PubMed Google Scholar
Kalındemirtaş FD, Kariper İA, Sert E, et al. The evaluation of anticancer activity by synthesizing 5FU loaded albumin nanoparticles by exposure to UV light. Toxicol in Vitro. 2022:84. https://doi.org/10.1016/j.tiv.2022.105435.
Danışman-Kalındemirtaş F, Kariper IA, Erdemir G, et al. Evaluation of anticancer effects of carboplatin-gelatin nanoparticles in different sizes synthesized with newly self-assembly method by exposure to IR light. Sci Rep. 2022:12. https://doi.org/10.1038/s41598-022-15051-7.
Kariper İA, Hepokur C, Danışman-Kalındemirtaş F, et al. A new method for synthesis of carbon nanoparticle and its applications. J Taibah Univ Sci. 2022;16:966–75. https://doi.org/10.1080/16583655.2022.2131996.
Li D, Wei X, Xue W, et al. Size effect of zwitterionic peptide-based nanoscale micelles on cancer therapy. ACS Appl Nano Mater. 2022;5:9344–55. https://doi.org/10.1021/acsanm.2c01665.
Shi Y, van der Meel R, Chen X, et al. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10:7921–4. https://doi.org/10.7150/thno.49577.
Article PubMed PubMed Central Google Scholar
Liu T, Jin R, Yuan P, et al. Intracellular enzyme-triggered assembly of amino acid-modified gold nanoparticles for accurate cancer therapy with multimode. ACS Appl Mater Interfaces. 2019;11:28621–30. https://doi.org/10.1021/acsami.9b05943.
Article CAS PubMed Google Scholar
Ding H, Tan P, Fu S, et al. Preparation and application of pH-responsive drug delivery systems. J Control Release. 2022;348:206–38. https://doi.org/10.1016/j.jconrel.2022.05.056.
Article CAS PubMed Google Scholar
Xu S. Y Duan, B Liu, Precise molecular design for high-performance luminogens with aggregation-induced emission. Adv Mater. 2020;32:e1903530. https://doi.org/10.1002/adma.201903530.
Article CAS PubMed Google Scholar
Zhang N-Y, Hu X-J, An H-W, et al. Programmable design and self assembly of peptide conjugated AIEgens for biomedical applications. Biomaterials. 2022;287:121655. https://doi.org/10.1016/j.biomaterials.2022.121655.
Article CAS PubMed Google Scholar
Sun T, Jiang C. Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Adv Drug Deliv Rev. 2023:114773. https://doi.org/10.1016/j.addr.2023.114773.
Jing X, Hu H, Sun Y, et al. The intracellular and extracellular microenvironment of tumor site: the trigger of stimuli-responsive drug delivery systems. Small. Methods. 2022;6:2101437. https://doi.org/10.1002/smtd.202101437.
Han M, Li Y, Guo Y, et al. Integrative and comprehensive pan-cancer analysis of lymphocyte-specific protein tyrosine kinase in human tumors. Int J Mol Sci. 2022;23:13998. https://doi.org/10.3390/ijms232213998.
Article CAS PubMed PubMed Central Google Scholar
Fang Y, Zhang L, Chen Y, et al. Polysaccharides based rapid self-crosslinking and wet tissue adhesive hemostatic powders for effective hemostasis. Carbohydr Polym. 2023;312:120819. https://doi.org/10.1016/j.carbpol.2023.120819.
Article CAS PubMed Google Scholar
Sang L, Li J, Zhang F, et al. Glycyrrhetinic acid modified chlorambucil prodrug for hepatocellular carcinoma treatment based on DNA replication and tumor microenvironment. Colloids Surf B: Biointerfaces. 2022;220:112864. https://doi.org/10.1016/j.colsurfb.2022.112864.
Article CAS PubMed Google Scholar
Niza E, Nieto-Jiménez C, Noblejas-López MD, et al. Poly (cyclohexene phthalate) nanoparticles for controlled dasatinib delivery in breast cancer therapy. Nanomaterials. 2019;9:1208. https://doi.org/10.3390/nano9091208.
Comments (0)