Targeting vimentin: a multifaceted approach to combatting cancer metastasis and drug resistance

Pérez-González, A., Bévant, K., & Blanpain, C. (2023). Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nature Cancer, 4(8), 1063–1082. https://doi.org/10.1038/s43018-023-00595-y

Article  PubMed  Google Scholar 

Torborg, S. R., Li, Z., Chan, J. E., & Tammela, T. (2022). Cellular and molecular mechanisms of plasticity in cancer. Trends in Cancer, 8(9), 735–746. https://doi.org/10.1016/j.trecan.2022.04.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vitale, I., Shema, E., Loi, S., & Galluzzi, L. (2021). Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nature Medicine, 27(2), 212–224. https://doi.org/10.1038/s41591-021-01233-9

Article  CAS  PubMed  Google Scholar 

Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313. https://doi.org/10.1038/nature10762

Article  CAS  PubMed  PubMed Central  Google Scholar 

Proietto, M., Crippa, M., Damiani, C., Pasquale, V., Sacco, E., Vanoni, M., et al. (2023). Tumor heterogeneity: preclinical models, emerging technologies, and future applications. [Review]. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1164535

Zhou, H., Tan, L., Liu, B., & Guan, X.-Y. (2023). Cancer stem cells: Recent insights and therapies. Biochemical Pharmacology, 209, 115441. https://doi.org/10.1016/j.bcp.2023.115441

Article  CAS  PubMed  Google Scholar 

Walcher, L., Kistenmacher, A.-K., Suo, H., Kitte, R., Dluczek, S., Strauß, A., et al. (2020). Cancer stem cells—origins and biomarkers: perspectives for targeted personalized therapies. [Review]. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01280.

Quan, Q., Wang, X., Lu, C., Ma, W., Wang, Y., Xia, G., et al. (2020). Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype leading the collective invasion. Cancer Science, 111(2), 467–476. https://doi.org/10.1111/cas.14285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayob, A. Z., & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science, 25(1), 20. https://doi.org/10.1186/s12929-018-0426-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and Cancer stem cells. Cell Communication and Signaling: CCS, 19(1), 19. https://doi.org/10.1186/s12964-020-00627-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776. https://doi.org/10.1016/j.tcb.2020.07.003

Article  PubMed  PubMed Central  Google Scholar 

Akhmetkaliyev, A., Alibrahim, N., Shafiee, D., & Tulchinsky, E. (2023). EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: The two sides of the same coin? Molecular Cancer, 22(1), 90. https://doi.org/10.1186/s12943-023-01793-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan, S., Norgard, R. J., & Stanger, B. Z. (2019). Cellular plasticity in cancer. Cancer Discovery, 9(7), 837–851. https://doi.org/10.1158/2159-8290.Cd-19-0015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, S., & Clairambault, J. (2020). Cell plasticity in cancer cell populations. F1000Research, 9, F1000 Faculty Rev-635. https://doi.org/10.12688/f1000research.24803.1

Aanen, D. K., & Debets, A. J. M. (2019). Mutation-rate plasticity and the germline of unicellular organisms. Proceedings of the Royal Society B: Biological Sciences, 286(1902), 20190128. https://doi.org/10.1098/rspb.2019.0128

Article  CAS  PubMed Central  Google Scholar 

Wu, S., Du, Y., Beckford, J., & Alachkar, H. (2018). Upregulation of the EMT marker vimentin is associated with poor clinical outcome in acute myeloid leukemia. Journal of Translational Medicine, 16(1), 170. https://doi.org/10.1186/s12967-018-1539-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuburich, N. A., den Hollander, P., Pietz, J. T., & Mani, S. A. (2022). Vimentin and cytokeratin: Good alone, bad together. Seminars in Cancer Biology, 86(Pt 3), 816–826. https://doi.org/10.1016/j.semcancer.2021.12.006

Article  CAS  PubMed  Google Scholar 

Liu, C. Y., Lin, H. H., Tang, M. J., & Wang, Y. K. (2015). Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget, 6(18), 15966–15983. https://doi.org/10.18632/oncotarget.3862

Article  PubMed  PubMed Central  Google Scholar 

Berr, A. L., Wiese, K., dos Santos, G., Koch, C. M., Anekalla, K. R., Kidd, M., et al. (2023). Vimentin is required for tumor progression and metastasis in a mouse model of non–small cell lung cancer. Oncogene, 42(25), 2074–2087. https://doi.org/10.1038/s41388-023-02703-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Usman, S., Waseem, N. H., Nguyen, T. K. N., Mohsin, S., Jamal, A., Teh, M.-T., et al. (2021). Vimentin is at the heart of epithelial mesenchymal transition (EMT) mediated metastasis. Cancers, 13(19), 4985.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Z., Fang, Z., & Ma, J. (2021). Regulatory mechanisms and clinical significance of vimentin in breast cancer. Biomedicine & Pharmacotherapy, 133, 111068. https://doi.org/10.1016/j.biopha.2020.111068

Article  CAS  Google Scholar 

Qin, S., Jiang, J., Lu, Y., Nice, E. C., Huang, C., Zhang, J., et al. (2020). Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy, 5(1), 228. https://doi.org/10.1038/s41392-020-00313-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Y., Hong, W., & Wei, X. (2022). The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129. https://doi.org/10.1186/s13045-022-01347-8

Article  Google Scholar 

Lindsey, S., & Langhans, S. A. (2014). Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition. Frontiers in Oncology, 4, 358. https://doi.org/10.3389/fonc.2014.00358

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal, 7(344), re8. https://doi.org/10.1126/scisignal.2005189

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, C., Wei, Y., & Wei, X. (2019). AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Molecular Cancer, 18(1), 153. https://doi.org/10.1186/s12943-019-1090-3

Article  PubMed  PubMed Central  Google Scholar 

Tanaka, K., Tokunaga, E., Inoue, Y., Yamashita, N., Saeki, H., Okano, S., et al. (2016). Impact of expression of vimentin and Axl in breast cancer. Clinical Breast Cancer, 16(6), 520-526.e522. https://doi.org/10.1016/j.clbc.2016.06.015

Article  CAS  PubMed  Google Scholar 

Li, X. L., Liu, L., Li, D. D., He, Y. P., Guo, L. H., Sun, L. P., et al. (2017). Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Science and Reports, 7, 40464. https://doi.org/10.1038/srep40464

Article  CAS  Google Scholar 

Masugi, Y., Yamazaki, K., Emoto, K., Effendi, K., Tsujikawa, H., Kitago, M., et al. (2015). Upregulation of integrin β4 promotes epithelial-mesenchymal transition and is a novel prognostic marker in pancreatic ductal adenocarcinoma. Laboratory Investigation, 95(3), 308–319. https://doi.org/10.1038/labinvest.2014.166

Article  CAS  PubMed  Google Scholar 

Jaiswal, R. K., Varshney, A. K., & Yadava, P. K. (2018). Diversity and functional evolution of the plasminogen activator system. Biomedicine & Pharmacotherapy, 98, 886–898. https://doi.org/10.1016/j.biopha.2018.01.029

Article  CAS  Google Scholar 

Wang, Q., Wang, Y., Zhang, Y., Zhang, Y., & Xiao, W. (2015). Involvement of urokinase in cigarette smoke extract-induced epithelial-mesenchymal transition in human small airway epithelial cells. Laboratory Investigation, 95(5), 469–479. https://doi.org/10.1038/labinvest.2015.33

Article  CAS  PubMed  Google Scholar 

Mauro, C. D., Pesapane, A., Formisano, L., Rosa, R., D’Amato, V., Ciciola, P., et al. (2017). Urokinase-type plasminogen activator receptor (uPAR) expression enhances invasion and metastasis in RAS mutated tumors. Science and Reports, 7(1), 9388. https://doi.org/10.1038/s41598-017-10062-1

Article  CAS  Google Scholar 

Skrypek, N., Bruneel, K., Vandewalle, C., De Smedt, E., Soen, B., Loret, N., et al. (2018). ZEB2 stably represses RAB25 expression through epigenetic regulation by SIRT1 and DNMTs during epithelial-to-mesenchymal transition. Epigenetics & Chromatin, 11(1), 70. https://doi.org/10.1186/s13072-018-0239-4

Article  CAS  Google Scholar 

Francart, M. E., Vanwynsberghe, A. M., Lambert, J., Bourcy, M., Genna, A., Ancel, J., et al. (2020). Vimentin prevents a miR-dependent negative regulation of tissue factor mRNA during epithelial-mesenchymal transitions and facilitates early metastasis. Oncogene, 39(18), 3680–3692. https://doi.org/10.1038/s41388-020-1244-1

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif