Pérez-González, A., Bévant, K., & Blanpain, C. (2023). Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nature Cancer, 4(8), 1063–1082. https://doi.org/10.1038/s43018-023-00595-y
Torborg, S. R., Li, Z., Chan, J. E., & Tammela, T. (2022). Cellular and molecular mechanisms of plasticity in cancer. Trends in Cancer, 8(9), 735–746. https://doi.org/10.1016/j.trecan.2022.04.007
Article CAS PubMed PubMed Central Google Scholar
Vitale, I., Shema, E., Loi, S., & Galluzzi, L. (2021). Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nature Medicine, 27(2), 212–224. https://doi.org/10.1038/s41591-021-01233-9
Article CAS PubMed Google Scholar
Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313. https://doi.org/10.1038/nature10762
Article CAS PubMed PubMed Central Google Scholar
Proietto, M., Crippa, M., Damiani, C., Pasquale, V., Sacco, E., Vanoni, M., et al. (2023). Tumor heterogeneity: preclinical models, emerging technologies, and future applications. [Review]. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1164535
Zhou, H., Tan, L., Liu, B., & Guan, X.-Y. (2023). Cancer stem cells: Recent insights and therapies. Biochemical Pharmacology, 209, 115441. https://doi.org/10.1016/j.bcp.2023.115441
Article CAS PubMed Google Scholar
Walcher, L., Kistenmacher, A.-K., Suo, H., Kitte, R., Dluczek, S., Strauß, A., et al. (2020). Cancer stem cells—origins and biomarkers: perspectives for targeted personalized therapies. [Review]. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01280.
Quan, Q., Wang, X., Lu, C., Ma, W., Wang, Y., Xia, G., et al. (2020). Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype leading the collective invasion. Cancer Science, 111(2), 467–476. https://doi.org/10.1111/cas.14285
Article CAS PubMed PubMed Central Google Scholar
Ayob, A. Z., & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science, 25(1), 20. https://doi.org/10.1186/s12929-018-0426-4
Article CAS PubMed PubMed Central Google Scholar
Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and Cancer stem cells. Cell Communication and Signaling: CCS, 19(1), 19. https://doi.org/10.1186/s12964-020-00627-5
Article CAS PubMed PubMed Central Google Scholar
Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776. https://doi.org/10.1016/j.tcb.2020.07.003
Article PubMed PubMed Central Google Scholar
Akhmetkaliyev, A., Alibrahim, N., Shafiee, D., & Tulchinsky, E. (2023). EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: The two sides of the same coin? Molecular Cancer, 22(1), 90. https://doi.org/10.1186/s12943-023-01793-z
Article CAS PubMed PubMed Central Google Scholar
Yuan, S., Norgard, R. J., & Stanger, B. Z. (2019). Cellular plasticity in cancer. Cancer Discovery, 9(7), 837–851. https://doi.org/10.1158/2159-8290.Cd-19-0015
Article CAS PubMed PubMed Central Google Scholar
Shen, S., & Clairambault, J. (2020). Cell plasticity in cancer cell populations. F1000Research, 9, F1000 Faculty Rev-635. https://doi.org/10.12688/f1000research.24803.1
Aanen, D. K., & Debets, A. J. M. (2019). Mutation-rate plasticity and the germline of unicellular organisms. Proceedings of the Royal Society B: Biological Sciences, 286(1902), 20190128. https://doi.org/10.1098/rspb.2019.0128
Article CAS PubMed Central Google Scholar
Wu, S., Du, Y., Beckford, J., & Alachkar, H. (2018). Upregulation of the EMT marker vimentin is associated with poor clinical outcome in acute myeloid leukemia. Journal of Translational Medicine, 16(1), 170. https://doi.org/10.1186/s12967-018-1539-y
Article CAS PubMed PubMed Central Google Scholar
Kuburich, N. A., den Hollander, P., Pietz, J. T., & Mani, S. A. (2022). Vimentin and cytokeratin: Good alone, bad together. Seminars in Cancer Biology, 86(Pt 3), 816–826. https://doi.org/10.1016/j.semcancer.2021.12.006
Article CAS PubMed Google Scholar
Liu, C. Y., Lin, H. H., Tang, M. J., & Wang, Y. K. (2015). Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget, 6(18), 15966–15983. https://doi.org/10.18632/oncotarget.3862
Article PubMed PubMed Central Google Scholar
Berr, A. L., Wiese, K., dos Santos, G., Koch, C. M., Anekalla, K. R., Kidd, M., et al. (2023). Vimentin is required for tumor progression and metastasis in a mouse model of non–small cell lung cancer. Oncogene, 42(25), 2074–2087. https://doi.org/10.1038/s41388-023-02703-9
Article CAS PubMed PubMed Central Google Scholar
Usman, S., Waseem, N. H., Nguyen, T. K. N., Mohsin, S., Jamal, A., Teh, M.-T., et al. (2021). Vimentin is at the heart of epithelial mesenchymal transition (EMT) mediated metastasis. Cancers, 13(19), 4985.
Article CAS PubMed PubMed Central Google Scholar
Chen, Z., Fang, Z., & Ma, J. (2021). Regulatory mechanisms and clinical significance of vimentin in breast cancer. Biomedicine & Pharmacotherapy, 133, 111068. https://doi.org/10.1016/j.biopha.2020.111068
Qin, S., Jiang, J., Lu, Y., Nice, E. C., Huang, C., Zhang, J., et al. (2020). Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy, 5(1), 228. https://doi.org/10.1038/s41392-020-00313-5
Article CAS PubMed PubMed Central Google Scholar
Huang, Y., Hong, W., & Wei, X. (2022). The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129. https://doi.org/10.1186/s13045-022-01347-8
Lindsey, S., & Langhans, S. A. (2014). Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition. Frontiers in Oncology, 4, 358. https://doi.org/10.3389/fonc.2014.00358
Article PubMed PubMed Central Google Scholar
Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal, 7(344), re8. https://doi.org/10.1126/scisignal.2005189
Article CAS PubMed PubMed Central Google Scholar
Zhu, C., Wei, Y., & Wei, X. (2019). AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Molecular Cancer, 18(1), 153. https://doi.org/10.1186/s12943-019-1090-3
Article PubMed PubMed Central Google Scholar
Tanaka, K., Tokunaga, E., Inoue, Y., Yamashita, N., Saeki, H., Okano, S., et al. (2016). Impact of expression of vimentin and Axl in breast cancer. Clinical Breast Cancer, 16(6), 520-526.e522. https://doi.org/10.1016/j.clbc.2016.06.015
Article CAS PubMed Google Scholar
Li, X. L., Liu, L., Li, D. D., He, Y. P., Guo, L. H., Sun, L. P., et al. (2017). Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Science and Reports, 7, 40464. https://doi.org/10.1038/srep40464
Masugi, Y., Yamazaki, K., Emoto, K., Effendi, K., Tsujikawa, H., Kitago, M., et al. (2015). Upregulation of integrin β4 promotes epithelial-mesenchymal transition and is a novel prognostic marker in pancreatic ductal adenocarcinoma. Laboratory Investigation, 95(3), 308–319. https://doi.org/10.1038/labinvest.2014.166
Article CAS PubMed Google Scholar
Jaiswal, R. K., Varshney, A. K., & Yadava, P. K. (2018). Diversity and functional evolution of the plasminogen activator system. Biomedicine & Pharmacotherapy, 98, 886–898. https://doi.org/10.1016/j.biopha.2018.01.029
Wang, Q., Wang, Y., Zhang, Y., Zhang, Y., & Xiao, W. (2015). Involvement of urokinase in cigarette smoke extract-induced epithelial-mesenchymal transition in human small airway epithelial cells. Laboratory Investigation, 95(5), 469–479. https://doi.org/10.1038/labinvest.2015.33
Article CAS PubMed Google Scholar
Mauro, C. D., Pesapane, A., Formisano, L., Rosa, R., D’Amato, V., Ciciola, P., et al. (2017). Urokinase-type plasminogen activator receptor (uPAR) expression enhances invasion and metastasis in RAS mutated tumors. Science and Reports, 7(1), 9388. https://doi.org/10.1038/s41598-017-10062-1
Skrypek, N., Bruneel, K., Vandewalle, C., De Smedt, E., Soen, B., Loret, N., et al. (2018). ZEB2 stably represses RAB25 expression through epigenetic regulation by SIRT1 and DNMTs during epithelial-to-mesenchymal transition. Epigenetics & Chromatin, 11(1), 70. https://doi.org/10.1186/s13072-018-0239-4
Francart, M. E., Vanwynsberghe, A. M., Lambert, J., Bourcy, M., Genna, A., Ancel, J., et al. (2020). Vimentin prevents a miR-dependent negative regulation of tissue factor mRNA during epithelial-mesenchymal transitions and facilitates early metastasis. Oncogene, 39(18), 3680–3692. https://doi.org/10.1038/s41388-020-1244-1
Comments (0)