Machine Learning in Cardiovascular Risk Prediction and Precision Preventive Approaches

Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart disease and stroke statistics—2023 update: a report from the American Heart Association. Circulation. 2023;147(8):e93–621.

Article  PubMed  Google Scholar 

Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States. Circulation. 2011;123(8):933–44.

Article  PubMed  Google Scholar 

Kindig D, Stoddart G. What is population health? Am J Public Health. 2003;93(3):380–3.

Article  PubMed  PubMed Central  Google Scholar 

Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the Framingham Study. Am J Cardiol. 1976;38(1):46–51.

Article  CAS  PubMed  Google Scholar 

Goff D, Lloyd-Jones D, Bennett G. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013 Nov 12 [E-pub ahead of print. J Am Coll Cardiol. 2014;63(25).

Khera R, Pandey A, Ayers CR, Carnethon MR, Greenland P, Ndumele CE, et al. Performance of the pooled cohort equations to estimate atherosclerotic cardiovascular disease risk by body mass index. JAMA Network Open. 2020;3(10):e2023242.

Article  PubMed  PubMed Central  Google Scholar 

Chia YC, Gray SYW, Ching SM, Lim HM, Chinna K. Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population: a retrospective cohort study. BMJ Open. 2015;5(5):e007324.

Article  PubMed  PubMed Central  Google Scholar 

Brindle PM, McConnachie A, Upton MN, Hart CL, Davey Smith G, Watt GC. The accuracy of the Framingham risk-score in different socioeconomic groups: a prospective study. Br J Gen Pract. 2005;55(520):838–45.

PubMed  PubMed Central  Google Scholar 

Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018;15(4):233–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gautam N, Ghanta SN, Clausen A, Saluja P, Sivakumar K, Dhar G, et al. Contemporary applications of machine learning for device therapy in heart failure. JACC: Heart Failure. 2022;10(9):603–22.

PubMed  Google Scholar 

Dobrev D. A definition of artificial intelligence. arXiv preprint arXiv:12101568. 2012.

Gautam N, Saluja P, Malkawi A, Rabbat MG, Al-Mallah MH, Pontone G, et al. Current and future applications of artificial intelligence in coronary artery disease. Healthcare. 2022;10(2):232.

Article  PubMed  PubMed Central  Google Scholar 

Bizopoulos P, Koutsouris D. Deep learning in cardiology. IEEE Rev Biomed Eng. 2019;12:168–93.

Article  PubMed  Google Scholar 

Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):3168–209.

Article  PubMed  Google Scholar 

Reboussin DM, Allen NB, Griswold ME, Guallar E, Hong Y, Lackland DT, et al. Systematic review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e116–35.

Article  CAS  PubMed  Google Scholar 

D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53.

Article  PubMed  Google Scholar 

Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines. Circulation. 2014;129(25 suppl 2):S49–73.

PubMed  Google Scholar 

Ridker PM, Cook NR. Statins: new American guidelines for prevention of cardiovascular disease. The Lancet. 2013;382(9907):1762–5.

Article  Google Scholar 

Rodriguez F, Chung S, Blum MR, Coulet A, Basu S, Palaniappan LP. Atherosclerotic cardiovascular disease risk prediction in disaggregated Asian and Hispanic subgroups using electronic health records. J Am Heart Assoc. 2019;8(14):e011874.

Article  PubMed  PubMed Central  Google Scholar 

Cho S-Y, Kim S-H, Kang S-H, Lee KJ, Choi D, Kang S, et al. Pre-existing and machine learning-based models for cardiovascular risk prediction. Sci Rep. 2021;11(1):8886.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2016;38(7):500–7.

PubMed Central  Google Scholar 

Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12(4):e0174944.

Article  PubMed  PubMed Central  Google Scholar 

Dimopoulos AC, Nikolaidou M, Caballero FF, Engchuan W, Sanchez-Niubo A, Arndt H, et al. Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk. BMC Med Res Methodol. 2018;18(1):179.

Article  PubMed  PubMed Central  Google Scholar 

Nakanishi R, Slomka PJ, Rios R, Betancur J, Blaha MJ, Nasir K, et al. Machine learning adds to clinical and CAC assessments in predicting 10-year CHD and CVD deaths. JACC Cardiovasc Imaging. 2021;14(3):615–25.

Article  PubMed  Google Scholar 

Sarraju A, Ward A, Chung S, Li J, Scheinker D, Rodríguez F. Machine learning approaches improve risk stratification for secondary cardiovascular disease prevention in multiethnic patients. Open Heart. 2021;8(2).

Rousset A, Dellamonica D, Menuet R, Lira Pineda A, Sabatine MS, Giugliano RP, et al. Can machine learning bring cardiovascular risk assessment to the next level? A methodological study using FOURIER trial data. Eur Heart J-Digit Health. 2021;3(1):38–48.

Article  PubMed  PubMed Central  Google Scholar 

He F, Page JH, Tandi J, Ghosh A, Liman C, Sarkar J, et al. Major adverse cardiovascular event risk prediction in Asian patients after myocardial infarction: a novel, dynamic, machine-learning approach. J Asian Pac Soc Cardiol. 2023;2(e25):2023.

Google Scholar 

•• Forrest IS, Petrazzini BO, Duffy Á, Park JK, Marquez-Luna C, Jordan DM, et al. Machine learning-based marker for coronary artery disease: derivation and validation in two longitudinal cohorts. The Lancet. 2023;401(10372):215–25. Findings from this study introduce the idea of viewing CAD on a continuum, with scores developed to predict the risk, and the clinical progression of the disease.

Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002;156(9):871–81.

Article  PubMed  Google Scholar 

Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine learning outperforms ACC / AHA CVD risk calculator in MESA. J Am Heart Assoc. 2018;7(22):e009476.

Article  PubMed  PubMed Central  Google Scholar 

Folsom AR, Chambless LE, Ballantyne CM, Coresh J, Heiss G, Wu KK, et al. An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: the atherosclerosis risk in communities study. Arch Intern Med. 2006;166(13):1368–73.

Article  CAS  PubMed  Google Scholar 

Rana JS, Gransar H, Wong ND, Shaw L, Pencina M, Nasir K, et al. Comparative value of coronary artery calcium and multiple blood biomarkers for prognostication of cardiovascular events. Am J Cardiol. 2012;109(10):1449–53.

Article  CAS  PubMed  Google Scholar 

Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355(25):2631–9.

Article  CAS  PubMed  Google Scholar 

• Tamarappoo BK, Lin A, Commandeur F, McElhinney PA, Cadet S, Goeller M, et al. Machine learning integration of circulating and imaging biomarkers for explainable patient-specific prediction of cardiac events: a prospective study. Atherosclerosis. 2021;318:76–82. Findings from this study demonstrate the added benefit of biomarkers when used with clinical imaging parameters for cardiovascular risk prediction, with the use of machine learning.

Lin S, Li Z, Fu B, Chen S, Li X, Wang Y, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo. Eur Heart J. 2020;41(46):4400–11.

Article  PubMed  Google Scholar 

Rim TH, Lee CJ, Tham YC, Cheung N, Yu M, Lee G, et al. Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs. Lancet Digit Health. 2021;3(5):e306–16.

Article  CAS  PubMed  Google Scholar 

Guo Y, Xia C, Zhong Y, Wei Y, Zhu H, Ma J, et al. Machine learning-enhanced echocardiography for screening coronary artery disease. Biomed Eng Online. 2023;22(1):44.

Article  PubMed  PubMed Central  Google Scholar 

•• Al'Aref SJ, Maliakal G, Singh G, van Rosendael AR, Ma X, Xu Z, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry. Eur Heart J. 2020;41(3):359–67. Findings from this study show a superior prediction power of imaging variables when used in conjunction with machine learning when compared to clinical risk prediction scores for the prediction of CAD.

Al’Aref SJ, Maliakal G, Singh G, van Rosendael AR, Ma X, Xu Z, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry. Eur Heart J. 2020;41(3):359–67.

Article  PubMed  Google Scholar 

Khav N, Ihdayhid AR, Ko B. CT-derived fractional flow reserve (CT-FFR) in the evaluation of coronary artery disease. Heart Lung Circ. 2020;29(11):1621–32.

Article  PubMed  Google Scholar 

Yang S, Koo BK, Hoshino M, Lee JM, Murai T, Park J, et al. CT angiographic and plaque predictors of functionally significant coronary disease and outcome using machine learning. JACC Cardiovasc Imaging. 2021;14(3):629–41.

Article  PubMed  Google Scholar 

Gillman MW, Hammond RA. Precision treatment and precision prevention: integrating “below and above the skin.” JAMA Pediatr. 2016;170(1):9–10.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif