Ankle and Plantar Flexor Muscle–Tendon Unit Function in Sprinters: A Narrative Review

Kuitunen S, Komi PV, Kyröläinen H. Knee and ankle joint stiffness in sprint running. Med Sci Sports Exerc. 2002;34:166–73.

Article  PubMed  Google Scholar 

Mann R, Herman J. Kinematic analysis of Olympic sprint performance: men’s 200 meters. J Appl Biomech. 1985;1:151–62.

Google Scholar 

Bezodis IN, Kerwin DG, Salo AIT. Lower-limb mechanics during the support phase of maximum-velocity sprint running. Med Sci Sports Exerc. 2008;40:707–15.

Article  PubMed  Google Scholar 

Gregoire L, Veeger HE, Huijing PA, van Ingen Schenau GJ. Role of mono- and biarticular muscles in explosive movements. Int J Sports Med. 1984;5:301–5.

Article  CAS  PubMed  Google Scholar 

Jacobs R, van Ingen Schenau GJ. Intermuscular coordination in a sprint push-off. J Biomech. 1992;25:953–65.

Article  CAS  PubMed  Google Scholar 

Brazil A, Exell T, Wilson C, Willwacher S, Bezodis IN, Irwin G. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting. J Sports Sci. 2017;35:1629–35.

PubMed  Google Scholar 

Pain MT, Hibbs A. Sprint starts and the minimum auditory reaction time. J Sports Sci. 2007;25:79–86.

Article  PubMed  Google Scholar 

Lai A, Schache AG, Lin Y-C, Pandy MG. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed. J Exp Biol. 2014;217:3159–68.

PubMed  Google Scholar 

Rome LC, Lindstedt SL. The quest for speed: muscles built for high-frequency contractions. Physiol J. 1998;13:261–8.

Article  Google Scholar 

Weyand PG, Sandell RF, Prime DN, Bundle MW. The biological limits to running speed are imposed from the ground up. J Appl Physiol. 2010;108:950–61.

Article  PubMed  Google Scholar 

Baumann W. Kinematic and dynamic characteristics of the sprint start. In: Komi PV, editor. Biomech V-B. Baltimore: University Park Press; 1976. p. 194–9.

Google Scholar 

Hay JG, Reid JG, The anatomical and mechanical bases of human motion. New Jersey. USA: Prentice Hall; 1982.

Google Scholar 

Bezodis NE, Salo AIT, Trewartha G. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure? Sports Biomech. 2010;9:258–69.

Article  PubMed  Google Scholar 

Bezodis NE, Salo AIT, Trewartha G. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters. Eur J Sport Sci. 2015;15:118–24.

Article  PubMed  Google Scholar 

Slawinski J, Bonnefoy A, Levêque J-M, Ontanon G, Riquet A, Dumas R, Chèze L. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J Strength Cond Res. 2010;24:896–905.

Article  PubMed  Google Scholar 

Slawinski J, Bonnefoy A, Ontanon G, Leveque JM, Miller C, Riquet A, Chèze L, Dumas R. Segment-interaction in sprint start: analysis of 3D angular velocity and kinetic energy in elite sprinters .2010;43:1494–502.

Jacobs R, Bobbert MF, van Ingen Schenau GJ. Mechanical output from individual muscles during explosive leg extensions: the role of biarticular muscles. J Biomech. 1996;29:513–23.

Article  CAS  PubMed  Google Scholar 

Schrödter E, Brüggemann G-P, Willwacher S. Is soleus muscle-tendon-unit behavior related to ground-force application during the sprint start? Int J Sports Physiol Perform. 2017;12:448–54.

Article  PubMed  Google Scholar 

Debaere S, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. From block clearance to sprint running: characteristics underlying an effective transition. J Sports Sci. 2013;31:137–49.

Article  PubMed  Google Scholar 

Guissard N, Duchateau J, Hainaut K. EMG and mechanical changes during sprint starts at different front block obliquities. Med Sci Sports Exerc. 1992;24:1257–63.

Article  CAS  PubMed  Google Scholar 

Mero A, Kuitunen S, Harland M, Kyröläinen H, Komi PV. Effects of muscle–tendon length on joint moment and power during sprint starts. J Sports Sci. 2006;24:165–73.

Article  PubMed  Google Scholar 

Mero A, Luhtanen P, Komi PV. A biomechanical study of the sprint start. Scand J Sports Sci. 1983;5:20–8.

Google Scholar 

Bezodis NE, Walton SP, Nagahara R. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance. J Sports Sci. 2019;37:560–7.

Article  PubMed  Google Scholar 

Willwacher S, Herrmann V, Heinrich K, Funken J, Strutzenberger G, Goldmann J-P, Braunstein B, Brazil A, Irwin G, Potthast W. Sprint start kinetics of amputee and non-amputee sprinters. PLoS One. 2016;11: e0166219.

Article  PubMed  PubMed Central  Google Scholar 

Brazil A, Exell T, Wilson C, Willwacher S, Bezodis IN, Irwin G. Joint kinetic determinants of starting block performance in athletic sprinting. J Sports Sci. 2018;36:1656–62.

Article  PubMed  Google Scholar 

Mero A, Komi PV. Reaction time and electromyographic activity during a sprint start. Eur J Appl Physiol Occup Physiol. 1990;61:73–80.

Article  CAS  PubMed  Google Scholar 

Čoh M, Peharec S, Bačić P. The sprint start: biomechanical analysis of kinematic, dynamic and electromyographic parameters. New Stud Athl. 2007;22:29.

Google Scholar 

Čoh M, Peharec S, Bačić P, Kampmiller T. Dynamic factors and electromyographic activity in a sprint start. Biol Sport. 2009;26:137–47.

Article  Google Scholar 

Piechota K, Borysiuk Z, Blaszczyszyn M. Pattern of movement and the pre-and post-start activation phase during the sprint start in the low-distance athletic run. Int J Perform Anal Sport. 2017;17:948–60.

Article  Google Scholar 

Guissard N, Duchateau J. Electromyography of the sprint start. J Hum Mov Stud. 1990;18:97–106.

Google Scholar 

Winter EM, Brookes FBC. Electromechanical response times and muscle elasticity in men and women. Eur J App Physiol Occup Physiol. 1991;63:124–8.

Article  CAS  Google Scholar 

Mero A. Relationships between the maximal running velocity, muscle fiber characteristics, force production and force relaxation of sprinters. Scand J Med Sci Sports. 1981;3:16–22.

Google Scholar 

Crotty ED, Hayes K, Harrison AJ. Sprint start performance: the potential influence of triceps surae electromechanical delay. Sports Biomech. 2019;21:604–21.

Article  PubMed  Google Scholar 

Bissas A, Walker J, Tucker CB, Paradisis GP, Merlino S. Biomechanical Report for the IAAF World Championships 2017: 100 Metres Men. IAAF World Championships Biomechanics Research Project. 2017. https://www.worldathletics.org/about-iaaf/documents/research-centre. Accessed 1 Dec 2022

Bissas A, Walker J, Tucker CB, Paradisis GP, Merlino S. Biomechanical Report for the IAAF World Championships 2017: 100 Metres Women. IAAF World Championships Biomechanics Research Project. 2017. https://www.worldathletics.org/about-iaaf/documents/research-centre. Accessed 1 Dec 2022.

Volkov NI, Lapin VI. Analysis of the velocity curve in sprint running. Med Sci Sports. 1979;11:332–7.

CAS  PubMed  Google Scholar 

Krzysztof M, Mero A. A kinematics analysis of three best 100-m performances ever. J Hum Kinet. 2013;36:149–60.

Article  PubMed  PubMed Central  Google Scholar 

Colyer SL, Nagahara R, Salo AIT. Kinetic demands of sprinting shift across the acceleration phase: novel analysis of entire force waveforms. Scand J Med Sci Sports. 2018;28:1784–92.

Article  CAS  PubMed  Google Scholar 

Hamner SR, Delp SL. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J Biomech. 2013;46:780–7.

Article  PubMed  Google Scholar 

Mann R, Sprague P. A kinetic analysis of the ground leg during sprint running. Res Q Exerc Sport. 1980;51:334–48.

Article  CAS  PubMed  Google Scholar 

Schache AG, Lai AK, Brown NA, Crossley KM, Pandy MG. Lower-limb joint mechanics during maximum acceleration sprinting. J Exp Biol. 2019;222: jeb09460.

Google Scholar 

Johnson MD, Buckley JG. Muscle power patterns in the mid-acceleration phase of sprinting. J Sports Sci. 2001;19:263–72.

Article  CAS  PubMed  Google Scholar 

Pandy MG, Lai AK, Schache AG, Lin Y-C. How muscles maximize performance in accelerated sprinting. Scand J Med Sci Sports. 2021;31:1882–96.

Article  PubMed  Google Scholar 

Bezodis NE, Trewartha G, Salo AIT. Understanding the effect of touchdown distance and ankle joint kinematics on sprint acceleration performance through computer simulation. Sports Biomech. 2015;14:232–45.

Article  PubMed  Google Scholar 

Stefanyshyn DJ, Nigg BM. Dynamic angular stiffness of the ankle joint during running and sprinting. J Appl Biomech. 1998;14:292–9.

Article  PubMed  Google Scholar 

Komi PV. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exerc Sport Sci Rev. 1984;12:81–121.

Article  CAS  PubMed  Google Scholar 

Komi PV. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Biomech. 2000;33:1197–206.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif