“Expiration dating and stability testing for human drug products” [https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-technical-guides/expiration-dating-and-stability-testing-human-drug-products], 2014.
Williams HE, Bright J, Roddy E, Poulton A, Cosgrove SD, Turner F, Harrison P, Brookes A, MacDougall E, Abbott A, Gordon C. A comparison of drug substance predicted chemical stability with ICH compliant stability studies. Drug Dev Ind Pharm. 2019;45(3):379–86. https://doi.org/10.1080/03639045.2018.1542707.
Article CAS PubMed Google Scholar
Qiu F, Scrivens G. eds. Accelerated predictive stability (APS): fundamentals and pharmaceutical industry practices. Academic Press 2018.
McMahon ME, Abbott A, Babayan Y, Carhart J, Chen C, Debie E, Fu M, Hoaglund-Hyzer C, Lennard A, Li H, Mazzeo T, McCaig L, Pischel S, Qiu F, Stephens D, Timpano R, Webb D, Wolfe C, Woodlief K, Wu Y. Considerations for updates to ICH Q1 and Q5C stability guidelines: embracing current technology and risk assessment strategies. AAPS J. 2021;23:1–9. https://doi.org/10.1208/s12248-021-00641-6.
Waterman KC, Swanson JT, Lippold BL. A scientific and statistical analysis of accelerated aging for pharmaceuticals. Part 1: accuracy of fitting methods. J Pharm Sci. 2014;103(10):3000–3006; https://doi.org/10.1002/jps.24075.
González-González O, Ramirez IO, Ramirez BI, O’Connell P, Ballesteros MP, Torrado JJ, Serrano DR. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics. 2022;14(11):2324. https://doi.org/10.3390/pharmaceutics14112324.
Article CAS PubMed PubMed Central Google Scholar
Rauk AP, Guo K, Hu Y, Cahya S, Weiss WF IV. Arrhenius time-scaled least squares: a simple, robust approach to accelerated stability data analysis for bioproducts. J Pharm Sci. 2014;103(8):2278–86. https://doi.org/10.1002/jps.24063.
Article CAS PubMed Google Scholar
Waterman R, Lewis J, Waterman KC. Accelerated stability modeling for peptides: a case study with bacitracin. AAPS PharmSciTech. 2017;18(5):1692–8. https://doi.org/10.1208/s12249-016-0635-7.
Kuzman D, Bunc M, Ravnik M, Reiter F, Žagar L, Bončina M. Long-term stability predictions of therapeutic monoclonal antibodies in solution using Arrhenius-based kinetics. Sci Rep. 2021;11(1):20534. https://doi.org/10.1038/s41598-021-99875-9.
Article CAS PubMed PubMed Central Google Scholar
Huelsmeyer M, Kuzman D, Bončina M, Martinez J, Steinbrugger C, Weusten J, Calero-Rubio C, Roche W, Niederhaus B, VanHaelst Y, Hrynyk M, Ballesta P, Achard H, Augusto S, Guillois M, Pszczolinski C, Gerasimov M, Neyra C, Ponduri D, Ramesh S, Clénet D. A universal tool for stability predictions of biotherapeutics, vaccines and in vitro diagnostic products. Sci Rep. 2023;13:10077. https://doi.org/10.1038/s41598-023-35870-6.
Article CAS PubMed PubMed Central Google Scholar
Shalaev E, Ohtake S, Moussa EM, Searles J, Nail S, Roberts CJ. Accelerated storage for shelf-life prediction of lyophiles: temperature dependence of degradation of amorphous small molecular weight drugs and proteins. J Pharm Sci. 2023;112(6):1509–22. https://doi.org/10.1016/j.xphs.2023.02.008.
Article CAS PubMed Google Scholar
Evers A, Clénet D, Pfeiffer-Marek S. Long-term stability prediction for developability assessment of biopharmaceutics using advanced kinetic modeling. Pharmaceutics. 2022;14(2):375. https://doi.org/10.3390/pharmaceutics14020375.
Article CAS PubMed PubMed Central Google Scholar
Waterman KC, MacDonald BC. Package selection for moisture protection for solid, oral drug products. J Pharm Sci. 2010;99(11):4437–52. https://doi.org/10.1002/jps.22161.
Article CAS PubMed Google Scholar
Waterman KC, Adami RC, Alsante KM, Antipas AS, Arenson DR, Carrier R, Hong J, Landis MS, Lombardo F, Shah JC, Shalaev E. Hydrolysis in pharmaceutical formulations. Pharm Dev Tech. 2002;7(2):113–46. https://doi.org/10.1081/PDT-120003494.
MacFaul PA, Ruston L, Wood JM. Activation energies for the decomposition of pharmaceuticals and their application to predicting hydrolytic stability in drug discovery. MedChemComm. 2011;2(2):140–2. https://doi.org/10.1039/C0MD00214C.
Comments (0)