Bento LM, Fagian MM, Vercesi AE, Gontijo JA (2007) Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats. Nephrol Dial Transplant 22(10):2817–2823. https://doi.org/10.1093/ndt/gfm306
Article CAS PubMed Google Scholar
Boito CA, Fanin M, Gavassini BF, Cenacchi G, Angelini C, Pegoraro E (2007) Biochemical and ultrastructural evidence of endoplasmic reticulum stress in LGMD2I. Virchows Arch 451(6):1047–1055. https://doi.org/10.1007/s00428-007-0515-3
Chuang IC, Dong HP, Yang RC, Wang TH, Tsai JH, Yang PH, Huang MS (2010) Effect of carbon dioxide on pulmonary vascular tone at various pulmonary arterial pressure levels induced by endothelin-1. Lung 188:199–207
Article CAS PubMed Google Scholar
Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J 43:207–213
Article CAS PubMed Google Scholar
Dittmann K, Mayer C, Rodemann HP (2010) Nuclear EGFR as novel therapeutic target: insights into nuclear translocation and function. Strahlenther Onkol 186(1):1–6. https://doi.org/10.1007/s00066-009-2026-4
Jung ME, Mallet RT (2018) Intermittent hypoxia training: Powerful, non-invasive cerebroprotection against ethanol withdrawal excitotoxicity. Respir Physiol Neurobiol 256:67–78
Article CAS PubMed Google Scholar
Kang JJ, Fung ML, Zhang K, Lam CS, Wu SX, Huang XF, Yang SJ, Wong-Riley MTT, Liu YY (2020) Chronic intermittent hypoxia alters the dendritic mitochondrial structure and activity in the pre-Bötzinger complex of rats. FASEB J 34(11):14588–14601. https://doi.org/10.1096/fj.201902141R
Article CAS PubMed Google Scholar
Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol 295(2):F323–F334
Article CAS PubMed Google Scholar
Kulikov VP, Tregub PP, Bespalov AG, Vvedenskiy AJ (2013) Comparative efficacy of hypoxia, hypercapnia and hypercapnic hypoxia increases body resistance to acute hypoxia in rats. Patol Fiziol Eksp Ter 3:59–61
Kulikov VP, Motin Yu G, Tregub PP, Kovzelev PD, Shoshin KA, Zinchenko EK, Chernetsky AE (2018) Combined hypercapnia and hypoxia lead to the acidosis and increase the amount HIF-1a in rat hippocampus. IM Sechenov Russian J Physiol 104(11):1347–1355
Lavoie C, Paiement J (2008) Topology of molecular machines of the endoplasmic reticulum: a compilation of proteomics and cytological data. Histochem Cell Biol 129(2):117–128. https://doi.org/10.1007/s00418-007-0370-y
Article CAS PubMed PubMed Central Google Scholar
Lukyanova L, Germanova E, Khmil N et al (2021) Signaling role of mitochondrial enzymes and ultrastructure in the formation of molecular mechanisms of adaptation to hypoxia. Int J Mol Sci 22(16):8636
Article CAS PubMed PubMed Central Google Scholar
Motin YG, Lepilov AV, Bgatova NP, Zharikov AY, Motina NV, Lapii GA, Lushnikova EL, Nepomnyashchikh LM (2016) Development of endoplasmic reticulum stress during experimental oxalate nephrolithiasis. Bull Exp Biol Med 160(3):381–385. https://doi.org/10.1007/s10517-016-3176-x
Article CAS PubMed Google Scholar
Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247. https://doi.org/10.1152/physrev.00039.2006
Article CAS PubMed Google Scholar
Pruimboom L, Muskiet FAJ (2018) Intermittent living: the use of ancient challenges as a vaccine against the deleterious effects of modern life—a hypothesis. Med Hypotheses 120:28–42
Rybnikova E, Samoilov M (2015) Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia. Front Neurosci 9:388
Article PubMed PubMed Central Google Scholar
Rybnikova EA, Nalivaeva MY, Zenko NN (2022) Intermittent hypoxic training as an effective tool for increasing the adaptive potential, endurance and working capacity of the brain. Front Neurosci 16:941740
Article PubMed PubMed Central Google Scholar
Schuldiner M, Schwappach B (2013) From rags to riches—the history of the endoplasmic reticulum. Biochim Biophys Acta 1833(11):2389–2391. https://doi.org/10.1016/j.bbamcr.2013.03.005
Article CAS PubMed Google Scholar
Secondo A, Petrozziello T, Tedeschi V, Boscia F, Pannaccione A, Molinaro P, Annunziato L (2020) Nuclear localization of NCX: role in Ca2+ handling and pathophysiological implications. Cell Calcium 86:102143. https://doi.org/10.1016/j.ceca.2019.102143
Article CAS PubMed Google Scholar
Su Y, Ke C, Li C, Huang C, Wan C (2022) Intermittent hypoxia promotes the recovery of motor function in rats with cerebral ischemia by regulating mitochondrial function. Exp Biol Med (Maywood) 247(15):1364–1378. https://doi.org/10.1177/15353702221098962
Article CAS PubMed Google Scholar
Tao T, Zhao M, Yang W et al (2014) Neuroprotective effects of therapeutic hypercapnia on spatial memory and sensorimotor impairment via anti-apoptotic mechanisms after focal cerebral ischemia/reperfusion. Neurosci Lett 24(573):1–6
Tregub P, Kulikov V, Bespalov A (2013) Tolerance to acute hypoxia maximally increases in case of joint effect of normobaric hypoxia and permissive hypercapnia in rats. Pathophysiology 20(3):165–170. https://doi.org/10.1016/j.pathophys.2013.09.001
Tregub P, Kulikov V, Motin Y, Bespalov A, Osipov I (2015) Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotective effect during focal ischemic injury in the brain. J Stroke Cerebrovasc Dis 24(2):381–387. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.003
Tregub PP, Kulikov VP, Motin YG, Nagibaeva ME, Zabrodina AS (2016) Stress of the endoplasmic reticulum of neurons in stroke can be maximally limited by combined exposure to hypercapnia and hypoxia. Bull Exp Biol Med 161(4):472–475. https://doi.org/10.1007/s10517-016-3441-z
Article CAS PubMed Google Scholar
Tregub PP, Malinovskaya NA, Osipova ED, Morgun AV, Kulikov VP (2023) Permissive hypercapnia and hypercapnic hypoxia inhibit signaling pathways of neuronal apoptosis in ischemic/hypoxic rats. Mol Biol Rep 50(3):2317–2333. https://doi.org/10.1007/s11033-022-08212-4
Article CAS PubMed Google Scholar
Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3(10):944–950. https://doi.org/10.1093/embo-reports/kvf202
Article CAS PubMed PubMed Central Google Scholar
Wu XC, Lai J, Wu XF, Jia ZH, Wei C, Wang HT (2011) Effects of Tongxinluo on neuron ultrastructure and endothelial cell self-repairing ability in hypoxia preconditioning mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi 27(4):396–399 (Chinese)
Yan F, Li J, Chen J, Hu Q, Gu C, Lin W, Chen G (2014) Endoplasmic reticulum stress is associated with neuroprotection against apoptosis via autophagy activation in a rat model of subarachnoid hemorrhage. Neurosci Lett 563:160–165. https://doi.org/10.1016/j.neulet.2014.01.058
Article CAS PubMed Google Scholar
Zhao YD, Cheng SY, Ou S, Xiao Z, He WJ, Jian-Cui RHZ (2012) Effect of hypobaric hypoxia on the P2X receptors of pyramidal cells in the immature rat hippocampus CA1 sub-field. Brain Inj 26(3):282–290
Zhong N, Zhang Y, Zhu HF, Zhou ZN (2000) Intermittent hypoxia exposure prevents mtDNA deletion and mitochondrial structure damage produced by ischemia/reperfusion injury. Sheng Li Xue Bao 52(5):375–380
Zhou AM, Li WB, Li QJ, Liu HQ, Feng RF, Zhao HG (2004) A short cerebral ischemic preconditioning upregulates adenosine receptors in the hippocampal CA1 region of rats. Neurosci Res 48:397–404
Article CAS PubMed Google Scholar
Zhou Q, Cao B, Niu L et al (2010) Effects of permissive hypercapnia on transient global cerebral ischemia–reperfusion injury in rats. Anesthesiology 112:288–297
Comments (0)