Impact of gadolinium concentration and cell oxygen levels on radiobiological characteristics of gadolinium neutron capture therapy technique in brain tumor treatment

Takagaki M, Hosmane NS. Gadolinium neutron capture therapy for malignant brain tumors. Aino J. 2008;6.

Hottinger AF, Yoon H, DeAngelis LM, Abrey LE. Neurological outcome of long-term glioblastoma survivors. J Neurooncol. 2009;95:301–5.

Article  PubMed  Google Scholar 

Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Rep Pract Oncol Radiother. 2018;23:462–73.

Article  PubMed  PubMed Central  Google Scholar 

Takagaki M, Tomaru N, Maguire JA, Hosmane NS. Future applications of Boron and Gadolinium neutron capture therapy. In: Hosmane NS, editor. Boron science, new technologies and applications. Boca Raton: CRC Press; 2011. p. 243–76.

Google Scholar 

Pozzi EC, Cardoso JE, Colombo LL, Thorp S, Monti Hughes A, Molinari AJ, et al. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model. Radiat Environ Biophys. 2012;51:331–9.

Article  PubMed  Google Scholar 

Nakagawa N, Akai F, Fukawa N, Fujita Y, Suzuki M, Ono K, Taneda M. Early effects of boron neutron capture therapy on rat glioma models. Brain Tumor Pathol. 2007;24:7–13.

Article  PubMed  Google Scholar 

Kanygin VV, Kichigin AI, Krivoshapkin AL, Taskaev SY. Perspectives of boron-neutron capture therapy of malignant brain tumors. In: AIP Conference Proceedings. 2017. p. 020030.

Enger SA, Giusti V, Fortin MA, Lundqvist H, Rosenschöld P. Dosimetry for gadolinium neutron capture therapy (GdNCT). Radiat Measure. 2013;59:233–40.

Article  CAS  Google Scholar 

Safavi-Naeini M, Chacon A, Guatelli S, Franklin DR, Bambery K, Gregoire MC, et al. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci Rep. 2018;8:16257.

Article  PubMed  PubMed Central  Google Scholar 

Kulabdullaev GA, Abdullaeva GA, Kim AA, Rakhmonov TT, Kurmantaev A. About radiation innatGd for neutron capture therapy. J Health Sci. 2016;4:35–44.

Article  Google Scholar 

Masiakowski JT, Horton JL, Peters LJ. Gadolinium neutron capture therapy for brain tumors: a computer study. Med Phys. 1992;19:1277–84.

Article  CAS  PubMed  Google Scholar 

Zhang DG, Feygelman V, Moros EG, Latifi K, Zhang GG. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy. PLoS ONE. 2014;9: e109389.

Article  PubMed  PubMed Central  Google Scholar 

De Stasio G, Rajesh D, Casalbore P, Daniels MJ, Erhardt RJ, Frazer BH, et al. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy? Neurol Res. 2005;27:387–98.

Article  PubMed  Google Scholar 

Salt C, Lennox AJ, Takagaki M, Maguire JA, Hosmane NS. Boron and gadolinium neutron capture therapy. Russ Chem Bull. 2004;53:1871–88.

Article  CAS  Google Scholar 

Martin RF, Feinendegen LE. The quest to exploit the auger effect in cancer radiotherapy-a reflective review. Int J Radiat Biol. 2016;92:617–32.

Article  CAS  PubMed  Google Scholar 

Yasui LS, Andorf C, Schneider L, Kroc T, Lennox A, Saroja KR. Gadolinium neutron capture in glioblastoma multiform cells. Int J Radiat Biol. 2008;84:1130–9.

Article  CAS  PubMed  Google Scholar 

Chan CC, Chen FH, Hsiao YY. Impact of hypoxia on relative biological effectiveness and oxygen enhancement ratio for a 62-MeV therapeutic proton beam. Cancers. 2021;13:2997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito A, Nakano H, Kusano Y, Hirayama R, Furusawa Y, Murayama C, et al. Contribution of indirect action to radiation-induced mammalian cell inactivation: dependence on photon energy and heavy-ion LET. Radiat Res. 2006;165:703–12.

Article  CAS  PubMed  Google Scholar 

Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. Cancer Drug Resist. 2021;4:244.

CAS  PubMed  PubMed Central  Google Scholar 

Snyder WS, Ford MR, Warner GG, Fisher HL. Estimates for absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med Suppl. 1969;3:47.

Google Scholar 

White DR, Griffith RV, Wilson IJ. Report 46- Photon, electron, proton and neutron interaction data for body tissues. J ICRU. 1992;28:171.

Google Scholar 

Goorley T, Zamenhof R, Nikjoo H. Calculated DNA damage from gadolinium Auger electrons and relation to dose distributions in a head phantom. Int J Radiat Biol. 2004;80:933–40.

Article  CAS  PubMed  Google Scholar 

Avagyan R, Avetisyan R, Ivanyan V, Kerobyan I. GEANT4 simulations of a beam shaping assembly design and optimization for thermal/epithermal neutrons. Acta Phys Pol B. 2017;48:10.

Article  Google Scholar 

Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol. 2017;63:01TR02.

Article  PubMed  Google Scholar 

Stewart R, Yu V, Georgakilas A, Koumenis C, Park J, Carlson D. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 2011;176:587–602.

Article  CAS  PubMed  Google Scholar 

Semenenko VA, Stewart RD. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res. 2004;161:451–7.

Article  CAS  PubMed  Google Scholar 

Semenenko VA, Stewart RD. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol. 2006;51:1693–706.

Article  CAS  PubMed  Google Scholar 

Hsiao YY, Hung TH, Tu SJ, Tung CJ. Fast Monte Carlo simulation of DNA damage induction by Auger-electron emission. Int J Radiat Biol. 2014;90:392–400.

Article  CAS  PubMed  Google Scholar 

Kalospyros SA, Gika V, Nikitaki Z, Kalamara A, Kyriakou I, Emfietzoglou D, et al. Monte Carlo simulation-based calculations of complex DNA damage for incidents of environmental ionizing radiation exposure. Appl Sci. 2021;11:8985.

Article  CAS  Google Scholar 

Stewart RD, Streitmatter SW, Argento DC, Kirkby C, Goorley JT, Moffitt G, et al. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions. Phys Med Biol. 2015;60:8249–74.

Article  CAS  PubMed  Google Scholar 

Wang CC, Hsiao Y, Lee CC, Chao TC, Wang CC, Tung CJ. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break. Int J Radiat Biol. 2012;88:158–63.

Article  CAS  PubMed  Google Scholar 

Chatzipapas KP, Papadimitroulas P, Emfietzoglou D, Kalospyros SA, Hada M, Georgakilas AG, et al. Ionizing radiation and complex DNA damage: quantifying the radiobiological damage using Monte Carlo simulations. Cancers. 2020;12:799.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ackerman NL, de la Fuente RL, Falzone N, Vallis KA, Bernal MA. Targeted alpha therapy with 212Pb or 225Ac: Change in RBE from daughter migration. Phys Med. 2018;51:91–8.

Article  PubMed  Google Scholar 

Duan D, Han Y, Tu Z, Guo H, Zhang Z, Shi Y, et al. Gadolinium neutron capture reaction-induced nucleodynamic therapy potentiates antitumor immunity. CCS Chem. 2023. https://doi.org/10.31635/ccschem.023.202202488.

Article  Google Scholar 

Cerullo N, Bufalino D, Daquino G. Progress in the use of gadolinium for NCT. Appl Radiat Isot. 2009;67:S157–60.

Article  CAS  PubMed  Google Scholar 

Reniers B, Liu D, Rusch T, Verhaegen F. Calculation of relative biological effectiveness of a low-energy electronic brachytherapy source. Phys Med Biol. 2008;53:7125–35.

Article  PubMed  Google Scholar 

Shamsabadi R, Baghani HR, Azadegan B, Mowlavi AA. Impact of spherical applicator diameter on relative biologic effectiveness of low energy IORT X-rays: a hybrid Monte Carlo study. Phys Med. 2020;80:297–307.

Article  PubMed  Google Scholar 

Yasui L, Owens K. Necrosis is not induced by gadolinium neutron capture in glioblastoma multiforme cells. Int J Radiat Biol. 2012;88:980–90.

Article  CAS  PubMed  Google Scholar 

Humm JL, Howell RW, Rao DV. Dosimetry of Auger-electron-emitting radionuclides: report no. 3 of AAPM Nuclear Medicine Task Group No. 6. Med Phys. 1995;21:1901–15.

Article  Google Scholar 

Matsumura A, Zhang T, Nakai K, Endo K, Kumada H, Yamamoto T, et al. Combination of boron and gadolinium compounds for neutron capture therapy. An in vitro study. J Exp Clin Cancer Res. 2005;24:93–8.

CAS  PubMed  Google Scholar 

Comments (0)

No login
gif