Takagaki M, Hosmane NS. Gadolinium neutron capture therapy for malignant brain tumors. Aino J. 2008;6.
Hottinger AF, Yoon H, DeAngelis LM, Abrey LE. Neurological outcome of long-term glioblastoma survivors. J Neurooncol. 2009;95:301–5.
Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Rep Pract Oncol Radiother. 2018;23:462–73.
Article PubMed PubMed Central Google Scholar
Takagaki M, Tomaru N, Maguire JA, Hosmane NS. Future applications of Boron and Gadolinium neutron capture therapy. In: Hosmane NS, editor. Boron science, new technologies and applications. Boca Raton: CRC Press; 2011. p. 243–76.
Pozzi EC, Cardoso JE, Colombo LL, Thorp S, Monti Hughes A, Molinari AJ, et al. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model. Radiat Environ Biophys. 2012;51:331–9.
Nakagawa N, Akai F, Fukawa N, Fujita Y, Suzuki M, Ono K, Taneda M. Early effects of boron neutron capture therapy on rat glioma models. Brain Tumor Pathol. 2007;24:7–13.
Kanygin VV, Kichigin AI, Krivoshapkin AL, Taskaev SY. Perspectives of boron-neutron capture therapy of malignant brain tumors. In: AIP Conference Proceedings. 2017. p. 020030.
Enger SA, Giusti V, Fortin MA, Lundqvist H, Rosenschöld P. Dosimetry for gadolinium neutron capture therapy (GdNCT). Radiat Measure. 2013;59:233–40.
Safavi-Naeini M, Chacon A, Guatelli S, Franklin DR, Bambery K, Gregoire MC, et al. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci Rep. 2018;8:16257.
Article PubMed PubMed Central Google Scholar
Kulabdullaev GA, Abdullaeva GA, Kim AA, Rakhmonov TT, Kurmantaev A. About radiation innatGd for neutron capture therapy. J Health Sci. 2016;4:35–44.
Masiakowski JT, Horton JL, Peters LJ. Gadolinium neutron capture therapy for brain tumors: a computer study. Med Phys. 1992;19:1277–84.
Article CAS PubMed Google Scholar
Zhang DG, Feygelman V, Moros EG, Latifi K, Zhang GG. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy. PLoS ONE. 2014;9: e109389.
Article PubMed PubMed Central Google Scholar
De Stasio G, Rajesh D, Casalbore P, Daniels MJ, Erhardt RJ, Frazer BH, et al. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy? Neurol Res. 2005;27:387–98.
Salt C, Lennox AJ, Takagaki M, Maguire JA, Hosmane NS. Boron and gadolinium neutron capture therapy. Russ Chem Bull. 2004;53:1871–88.
Martin RF, Feinendegen LE. The quest to exploit the auger effect in cancer radiotherapy-a reflective review. Int J Radiat Biol. 2016;92:617–32.
Article CAS PubMed Google Scholar
Yasui LS, Andorf C, Schneider L, Kroc T, Lennox A, Saroja KR. Gadolinium neutron capture in glioblastoma multiform cells. Int J Radiat Biol. 2008;84:1130–9.
Article CAS PubMed Google Scholar
Chan CC, Chen FH, Hsiao YY. Impact of hypoxia on relative biological effectiveness and oxygen enhancement ratio for a 62-MeV therapeutic proton beam. Cancers. 2021;13:2997.
Article CAS PubMed PubMed Central Google Scholar
Ito A, Nakano H, Kusano Y, Hirayama R, Furusawa Y, Murayama C, et al. Contribution of indirect action to radiation-induced mammalian cell inactivation: dependence on photon energy and heavy-ion LET. Radiat Res. 2006;165:703–12.
Article CAS PubMed Google Scholar
Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. Cancer Drug Resist. 2021;4:244.
CAS PubMed PubMed Central Google Scholar
Snyder WS, Ford MR, Warner GG, Fisher HL. Estimates for absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med Suppl. 1969;3:47.
White DR, Griffith RV, Wilson IJ. Report 46- Photon, electron, proton and neutron interaction data for body tissues. J ICRU. 1992;28:171.
Goorley T, Zamenhof R, Nikjoo H. Calculated DNA damage from gadolinium Auger electrons and relation to dose distributions in a head phantom. Int J Radiat Biol. 2004;80:933–40.
Article CAS PubMed Google Scholar
Avagyan R, Avetisyan R, Ivanyan V, Kerobyan I. GEANT4 simulations of a beam shaping assembly design and optimization for thermal/epithermal neutrons. Acta Phys Pol B. 2017;48:10.
Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol. 2017;63:01TR02.
Stewart R, Yu V, Georgakilas A, Koumenis C, Park J, Carlson D. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 2011;176:587–602.
Article CAS PubMed Google Scholar
Semenenko VA, Stewart RD. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res. 2004;161:451–7.
Article CAS PubMed Google Scholar
Semenenko VA, Stewart RD. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol. 2006;51:1693–706.
Article CAS PubMed Google Scholar
Hsiao YY, Hung TH, Tu SJ, Tung CJ. Fast Monte Carlo simulation of DNA damage induction by Auger-electron emission. Int J Radiat Biol. 2014;90:392–400.
Article CAS PubMed Google Scholar
Kalospyros SA, Gika V, Nikitaki Z, Kalamara A, Kyriakou I, Emfietzoglou D, et al. Monte Carlo simulation-based calculations of complex DNA damage for incidents of environmental ionizing radiation exposure. Appl Sci. 2021;11:8985.
Stewart RD, Streitmatter SW, Argento DC, Kirkby C, Goorley JT, Moffitt G, et al. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions. Phys Med Biol. 2015;60:8249–74.
Article CAS PubMed Google Scholar
Wang CC, Hsiao Y, Lee CC, Chao TC, Wang CC, Tung CJ. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break. Int J Radiat Biol. 2012;88:158–63.
Article CAS PubMed Google Scholar
Chatzipapas KP, Papadimitroulas P, Emfietzoglou D, Kalospyros SA, Hada M, Georgakilas AG, et al. Ionizing radiation and complex DNA damage: quantifying the radiobiological damage using Monte Carlo simulations. Cancers. 2020;12:799.
Article CAS PubMed PubMed Central Google Scholar
Ackerman NL, de la Fuente RL, Falzone N, Vallis KA, Bernal MA. Targeted alpha therapy with 212Pb or 225Ac: Change in RBE from daughter migration. Phys Med. 2018;51:91–8.
Duan D, Han Y, Tu Z, Guo H, Zhang Z, Shi Y, et al. Gadolinium neutron capture reaction-induced nucleodynamic therapy potentiates antitumor immunity. CCS Chem. 2023. https://doi.org/10.31635/ccschem.023.202202488.
Cerullo N, Bufalino D, Daquino G. Progress in the use of gadolinium for NCT. Appl Radiat Isot. 2009;67:S157–60.
Article CAS PubMed Google Scholar
Reniers B, Liu D, Rusch T, Verhaegen F. Calculation of relative biological effectiveness of a low-energy electronic brachytherapy source. Phys Med Biol. 2008;53:7125–35.
Shamsabadi R, Baghani HR, Azadegan B, Mowlavi AA. Impact of spherical applicator diameter on relative biologic effectiveness of low energy IORT X-rays: a hybrid Monte Carlo study. Phys Med. 2020;80:297–307.
Yasui L, Owens K. Necrosis is not induced by gadolinium neutron capture in glioblastoma multiforme cells. Int J Radiat Biol. 2012;88:980–90.
Article CAS PubMed Google Scholar
Humm JL, Howell RW, Rao DV. Dosimetry of Auger-electron-emitting radionuclides: report no. 3 of AAPM Nuclear Medicine Task Group No. 6. Med Phys. 1995;21:1901–15.
Matsumura A, Zhang T, Nakai K, Endo K, Kumada H, Yamamoto T, et al. Combination of boron and gadolinium compounds for neutron capture therapy. An in vitro study. J Exp Clin Cancer Res. 2005;24:93–8.
Comments (0)