Ahmadpour S, Heravi Y (2012) Quantification of TUNEL assay in hippocampus of diabetic rats by MAT LAB: comparison with stereological method. Clin Experiment Pathol. https://doi.org/10.4172/2161-0681.1000108
Arriola Apelo SI, Neuman JC, Baar EL, Syed FA, Cummings NE, Brar HK, Pumper CP, Kimple ME, Lamming DW (2016) Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell 15(1):28–38
Article CAS PubMed Google Scholar
Bockaert J, Marin P (2015) mTOR in brain physiology and pathologies. Physiol Rev 95(4):1157–1187
Article CAS PubMed Google Scholar
Chen S, Atkins CM, Liu CL, Alonso OF, Dietrich WD, Hu BR (2007) Alterations in mammalian target of rapamycin signaling pathways after traumatic brain injury. J Cereb Blood Flow Metab 27(5):939–949
Article CAS PubMed Google Scholar
Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26(1):86–93
Article CAS PubMed Google Scholar
Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, Lenahan C, Zhang JH, Shao A, Zhang J (2020) Programmed cell deaths and potential crosstalk with blood–brain barrier dysfunction after hemorrhagic stroke. Front Cell Neurosci 14:68
Article CAS PubMed Central PubMed Google Scholar
Forouzanfar F, Ebrahimi PR, Sadeghnia HR (2022) Neuroprotection of everolimus against focal cerebral ischemia-reperfusion injury in rats. J Stroke Cerebrovasc Dis 31(8):106576
Fu G, Wang H, Cai Y, Zhao H, Fu W (2018) Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats. Drug Des Dev Ther 12:1609
Hadley G, Beard DJ, Couch Y, Neuhaus AA, Adriaanse BA, DeLuca GC, Sutherland BA, Buchan AM (2019) Rapamycin in ischemic stroke: Old drug, new tricks? J Cereb Blood Flow Metab 39(1):20–35
Article CAS PubMed Google Scholar
Hasskarl J (2014) Everolimus. In: Priya R (ed) Small molecules in oncology. Springer, New York, pp 373–392
Hu X, Tao C, Gan Q, Zheng J, Li H, You C (2016) Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxid Med Cell Longev. https://doi.org/10.1155/2016/3215391
Article PubMed Central PubMed Google Scholar
Hwang SK, Kim HH (2011) The functions of mTOR in ischemic diseases. BMB Rep 44(8):506–511
Article CAS PubMed Google Scholar
Jafarian M, Rahimi S, Behnam F, Hosseini M, Haghir H, Sadeghzadeh B, Gorji A (2010) The effect of repetitive spreading depression on neuronal damage in juvenile rat brain. Neuroscience 169(1):388–394
Article CAS PubMed Google Scholar
Kellner CP, Connolly ES Jr (2010) Neuroprotective strategies for intracerebral hemorrhage: trials and translation. Stroke 41(10_suppl_1):S99–S102
Article CAS PubMed Google Scholar
Klawitter J, Nashan B, Christians U (2015) Everolimus and sirolimus in transplantation-related but different. Expert Opin Drug Saf 14(7):1055–1070
Article CAS PubMed Central PubMed Google Scholar
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293
Article CAS PubMed Central PubMed Google Scholar
Li N, Worthmann H, Deb M, Chen S, Weissenborn K (2011) Nitric oxide (NO) and asymmetric dimethylarginine (ADMA): their pathophysiological role and involvement in intracerebral hemorrhage. Neurol Res 33(5):541–548
Article CAS PubMed Google Scholar
Li D, Liu F, Yang T, Jin T, Zhang H, Luo X, Wang M (2016) Rapamycin protects against neuronal death and improves neurological function with modulation of microglia after experimental intracerebral hemorrhage in rats. Cell Mol Biol (Noisy-le-Grand) 62(11):67–75
Liu ZC, Meng LQ, Song JH, Gao J (2018) Dynamic protein expression of NF-κB following rat intracerebral hemorrhage and its association with apoptosis. Exp Ther Med 16(5):3903–3908
PubMed Central PubMed Google Scholar
Lu Q, Gao L, Huang L, Ruan L, Yang J, Huang W, Li Z, Zhang Y, Jin K, Zhuge Q (2014) Inhibition of mammalian target of rapamycin improves neurobehavioral deficit and modulates immune response after intracerebral hemorrhage in rat. J Neuroinflammation 11(1):1–13
MacKeigan JP, Krueger DA (2015) Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. Neuro Oncol 17(12):1550–1559
Article CAS PubMed Central PubMed Google Scholar
Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10(14):2305–2316
Article CAS PubMed Central PubMed Google Scholar
Qu J, Chen W, Hu R, Feng H (2016) The injury and therapy of reactive oxygen species in intracerebral hemorrhage looking at mitochondria. Oxid Med Cell Longev. https://doi.org/10.1155/2016/2592935
Article PubMed Central PubMed Google Scholar
Rakhshandeh H, Asgharzade S, Khorrami MB, Forouzanfar F (2021) Protective effect of Capparis spinosa extract against focal cerebral ischemia-reperfusion injury in rats. Cent Nerv Syst Agents Med Chem (Former Curr Med Chem-Cent Nerv Syst Agents) 21(2):148–153
Rakhshandeh H, Ghorbanzadeh A, Negah SS, Akaberi M, Rashidi R, Forouzanfar F (2021) Pain-relieving effects of Lawsonia inermis on neuropathic pain induced by chronic constriction injury. Metab Brain Dis 36:1709–1716
Article CAS PubMed Google Scholar
Reho JJ, Guo DF, Rahmouni K (2019) Mechanistic target of rapamycin complex 1 signaling modulates vascular endothelial function through reactive oxygen species. J Am Heart Assoc 8(9):e010662
Article PubMed Central PubMed Google Scholar
Sarbassov DD, Ali SM, Sengupta S, Sheen J-H, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168
Article CAS PubMed Google Scholar
Tsang CK, Qi H, Liu LF, Zheng XS (2007) Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 12(3–4):112–124
Article CAS PubMed Google Scholar
Vafaee F, Zarifkar A, Emamghoreishi M, Namavar MR, Shahpari M, Zarifkar AH (2018) Effect of recombinant insulin-like growth factor-2 injected into the hippocampus on memory impairment following hippocampal intracerebral hemorrhage in rats. Galen Med J 7:e1353
Article PubMed Central PubMed Google Scholar
Vafaee F, Zarifkar A, Emamghoreishi M, Namavar MR, Shirzad S, Ghazavi H, Mahdavizadeh V (2020) Insulin-like growth factor 2 (IGF-2) regulates neuronal density and IGF-2 distribution following hippocampal intracerebral hemorrhage. J Stroke Cerebrovasc Dis 29(10):105128
Wang J-P, Zhang M-Y (2017) Role for target of rapamycin (mTOR) signal pathway in regulating neuronal injury after intracerebral hemorrhage. Cell Physiol Biochem 41(1):145–153
Article CAS PubMed Google Scholar
Wang Y-X, Yan A, Ma Z-H, Wang Z, Zhang B, Ping J-L, Zhu J-S, Zhou Y, Dai L (2011) Nuclear factor-κB and apoptosis in patients with intracerebral hemorrhage. J Clin Neurosci 18(10):1392–1395
Wang J, Yang X, Zhang J (2016) Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells. Cell Signal 28(8):1099–1104
Article CAS PubMed Google Scholar
Xiong X-Y, Yang Q-W (2015) Rethinking the roles of inflammation in the intracerebral hemorrhage. Transl Stroke Res 6(5):339–341
Yang M-T, Lin Y-C, Ho W-H, Liu C-L, Lee W-T (2017) Everolimus is better than rapamycin in attenuating neuroinflammation in kainic acid-induced seizures. J Neuroinflammation 14(1):1–10
Yao Z, Bai Q, Wang G (2021) Mechanisms of oxidative stress and therapeutic targets following intracerebral hemorrhage. Oxid Med Cell Longev. https://doi.org/10.1155/2021/8815441
Article PubMed Central PubMed Google Scholar
Yates DH (2016) mTOR treatment in lymphangioleiomyomatosis: the role of everolimus. Expert Rev Respir Med 10(3):249–260
Article CAS PubMed Google Scholar
Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, LaPointe M, Chopp M (2001) A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 50(5):602–611
Comments (0)