Tjäderhane L, Carrilho MR, Breschi L, et al. Dentin basic structure and composition—an overview. Endod Topics. 2009;20(1):3–29.
Goldberg M, Kulkarni AB, Young M, et al. Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed). 2011;3:711.
Purk JH. 8 - Morphologic and structural analysis of material-tissue interfaces relevant to dental reconstruction. In: Spencer P, Misra A, editors. Material-tissue interfacial phenomena. Woodhead Publishing; 2017. p. 205–29.
Lester K. Some preliminary observations in caries (“ remineralization”) crystals in enamel and dentine by surface electron microscopy. Virchows Arch Abt A Path Anat. 1968;344:196–212.
Kassebaum N, Bernabé E, Dahiya M, Bhandari B, Murray C, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650–8.
Nakajima M, Kunawarote S, Prasansuttiporn T, Tagami J. Bonding to caries-affected dentin. Japan Dent Sci Rev. 2011;47(2):102–14. https://doi.org/10.1016/j.jdsr.2011.03.002.
Buzalaf MA, Hannas AR, Magalhães AC, Rios D, Honório HM, Delbem AC. pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations. J Appl Oral Sci. 2010;18(4):316–34. https://doi.org/10.1590/s1678-77572010000400002.
Article PubMed PubMed Central Google Scholar
Bjørndal L, Laustsen MH, Reit C. Root canal treatment in Denmark is most often carried out in carious vital molar teeth and retreatments are rare. Int Endod J. 2006;39(10):785–90. https://doi.org/10.1111/j.1365-2591.2006.01149.x.
Spencer P, Wang Y, Katz JL, Misra A. Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. J Biomed Opt. 2005;10(3):031104–11.
Tjäderhane L, Hietala E-L, Larmas M. Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image. J Dent Res. 1995;74(11):1770–4.
Zheng L, Nakajima M, Higashi T, Foxton RM, Tagami J. Hardness and Young’s modulus of transparent dentin associated with aging and carious disease. Dent Mater J. 2005;24(4):648–53.
Yoshiyama M, Tay F, Doi J, Nishitani Y, Yamada T, Itou K, et al. Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res. 2002;81(8):556–60.
Zheng L, Hilton JF, Habelitz S, Marshall SJ, Marshall GW. Dentin caries activity status related to hardness and elasticity. Eur J Oral Sci. 2003;111(3):243–52.
Erhardt MCG, Toledano M, Osorio R, Pimenta LA. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: effects of long-term water exposure. Dent Mater. 2008;24(6):786–98.
Wang Y, Spencer P, Walker MP. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res Part A: Off J Soci Biomater, Japan Soc Biomater, Aust Soc Biomater Korean Soc Biomater. 2007;81(2):279–86.
Perdigão J. Dentin bonding—variables related to the clinical situation and the substrate treatment. Dent Mater. 2010;26(2):e24–37. https://doi.org/10.1016/j.dental.2009.11.149.
Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, et al. Functional role of inorganic trace elements in dentin apatite tissue—part 1: Mg, Sr, Zn, and Fe. J Trace Elem Med Biol. 2022;71:126932.
Saghiri MA, Vakhnovetsky J, Vakhnovetsky A. Functional role of inorganic trace elements in dentin apatite—part ii: copper, manganese, silicon, and lithium. J Trace Elem Med Biol. 2022. https://doi.org/10.1016/j.jtemb.2022.126995.
Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, et al. Functional role of inorganic trace elements in dentin apatite tissue-part III: Se, F, Ag, and B. J Trace Elem Med Biol. 2022;72:126990. https://doi.org/10.1016/j.jtemb.2022.126990.
Zheng K, Song W, Sun A, Chen X, Liu J, Luo Q, et al. Enzymatic production of ascorbic acid-2-phosphate by recombinant acid phosphatase. J Agric Food Chem. 2017;65(20):4161–6. https://doi.org/10.1021/acs.jafc.7b00612.
Song W, Zheng K, Xu X, Gao C, Guo L, Liu J, et al. Enzymatic production of ascorbic acid-2-phosphate by engineered pseudomonas aeruginosa acid phosphatase. J Agric Food Chem. 2021;69(47):14215–21. https://doi.org/10.1021/acs.jafc.1c04685.
Liu X, Ma Y, Chen M, Ji J, Zhu Y, Zhu Q, et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B. 2021;9(33):6691–702.
Zdanowicz JA, Featherstone JD, Espeland MA, Curzon ME. Inhibitory effect of barium on human caries prevalence. Commun Dent Oral Epidemiol. 1987;15(1):6–9.
Ren F, Xin R, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5(8):3141–9.
Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite. Biomaterials. 2009;30(15):2864–72.
Jayasree R, Kumar T, Mahalaxmi S, Abburi S, Rubaiya Y, Doble M. Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. J Mater Sci - Mater Med. 2017;28(6):1–12.
Jelaca-Tavakoli M, Gerlach RF, Djuric M. Manganese (Mn) in human teeth. FASEB J. 2016;30:778–83.
Oliveira PH, Santana LAB, Ferreira NS, Sharifi-Asl S, Shokuhfar T, Shahbazian-Yassar R, et al. Manganese behavior in hydroxyapatite crystals revealed by X-ray difference Fourier maps. Ceram Int. 2020;46(8P):10585–97. https://doi.org/10.1016/j.ceramint.2020.01.062.
Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, et al. Manganese in precipitated hydroxyapatites. Eur J Inorg Chem. 2003;2003(7):1445–51.
Ghosh ANB, Kumar V, Nayan K. Role of minerals and trace elements in oral health - a review. J Oral Dent Health. 2016;2:1–2.
Pereira P, Inokoshi S, Yamada T, Tagami J. Microhardness of in vitro caries inhibition zone adjacent to conventional and resin-modified glass ionomer cements. Dent Mater. 1998;14(3):179–85.
Marquezan M, Corrêa FNP, Sanabe ME, Rodrigues Filho LE, Hebling J, Guedes-Pinto AC, et al. Artificial methods of dentine caries induction: a hardness and morphological comparative study. Arch Oral Biol. 2009;54(12):1111–7. https://doi.org/10.1016/j.archoralbio.2009.09.007.
Williams PD, Smith DC. Measurement of the tensile strength of dental restorative materials by use of a diametral compression test. J Dent Res. 1971;50(2):436–42. https://doi.org/10.1177/00220345710500025401.
Ban S, Anusavice K. Influence of test method on failure stress of brittle dental materials. J Dent Res. 1990;69(12):1791–9.
Davari A, Kazemi AD, Mousavinasab M, Yassaei S, Alavi A. Evaluation the compressive and diametric tensile strength of nano and hybrid composites. Dent Res J (Isfahan). 2012;9(6):827–8.
Talal A, Hamid SK, Khan M, et al. Structure of biological apatite: bone and tooth. In: Khan AS, Chaudhry AA, editors., et al., Handbook of ionic substituted hydroxyapatites. Cambridge: Woodhead Publishing; 2020. p. 1–19.
Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108(11):4754–83.
Article PubMed PubMed Central Google Scholar
Tite T, Popa A-C, Balescu LM, Bogdan IM, Pasuk I, Ferreira JM, et al. Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials. 2018;11(11):2081.
Article PubMed PubMed Central Google Scholar
Kay MI, Young R, Posner A. Crystal structure of hydroxyapatite. Nature. 1964;204(4963):1050–2.
Elliott J. Hydroxyapatite and nonstoichiometric apatites. Structure and chemistry of the apatites and other calcium orthophosphates. 1994;18:111-89
Šupová M. Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 2015;41(8):9203–31.
Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: a review of current trends. J Biomed Mater Res B Appl Biomater. 2017;105(5):1285–99. https://doi.org/10.1002/jbm.b.33651.
Saghiri MA, Saghiri AM, Samadi E, et al. Neural network approach to evaluate the physical properties of dentin. Odontology. 2023;111(1):68–77. https://doi.org/10.1007/s10266-022-00726-4.
Saghiri MA, García-Godoy F, Asgar K, Lotfi M. The effect of Morinda Citrifolia juice as an endodontic irrigant on smear layer and microhardness of root canal dentin. Oral Sci Int. 2013;10(2):53–7.
Comments (0)