AFG3L2 Biallelic Mutation: Clinical Heterogeneity in Two Italian Patients

Koppen M, Metodiev MD, Casari G, Rugarli EI, Langer T. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol Cell Biol. 2007;27(2):758–67. https://doi.org/10.1128/MCB.01470-06.

Article  PubMed  CAS  Google Scholar 

Patron M, Sprenger HG, Langer T. m-AAA proteases, mitochondrial calcium homeostasis, and neurodegeneration. Cell Res. 2018;28(3):296–306. https://doi.org/10.1038/cr.2018.17.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G, Pastore A, Finardi A, Cagnoli C, Tempia F, Frontali M, Veneziano L, Sacco T, Boda E, Brussino A, Bonn F, Castellotti B, Baratta S, Mariotti C, Gellera C, Fracasso V, Magri S, Langer T, Plevani P, Di Donato S, Muzi-Falconi M, Taroni F. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet. 2010;42(4):313–21. https://doi.org/10.1038/ng.544.

Article  PubMed  CAS  Google Scholar 

Baderna V, Schultz J, Kearns LS, Fahey M, Thompson BA, Ruddle JB, Huq A, Maltecca F. A novel AFG3L2 mutation close to AAA domain leads to aberrant OMA1 and OPA1 processing in a family with optic atrophy. Acta Neuropathol Commun. 2020;8(1):93. https://doi.org/10.1186/s40478-020-00975-w.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pierson TM, Adams D, Bonn F, Martinelli P, Cherukuri PF, Teer JK, Hansen NF, Cruz P, Mullikin For The Nisc Comparative Sequencing Program JC, Blakesley RW, Golas G, Kwan J, Sandler A, Fuentes Fajardo K, Markello T, Tifft C, Blackstone C, Rugarli EI, Langer T, Gahl WA, Toro C. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet. 2011;7(10):e1002325. https://doi.org/10.1371/journal.pgen.1002325.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, Joensuu T, Canafoglia L, Franceschetti S, Michelucci R, Markkinen S, Heron SE, Hildebrand MS, Andermann E, Andermann F, Gambardella A, Tinuper P, Licchetta L, Scheffer IE, Criscuolo C, Filla A, Ferlazzo E, Ahmad J, Ahmad A, Baykan B, Said E, Topcu M, Riguzzi P, King MD, Ozkara C, Andrade DM, Engelsen BA, Crespel A, Lindenau M, Lohmann E, Saletti V, Massano J, Privitera M, Espay AJ, Kauffmann B, Duchowny M, Møller RS, Straussberg R, Afawi Z, Ben-Zeev B, Samocha KE, Daly MJ, Petrou S, Lerche H, Palotie A, Lehesjoki AE. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015;47(1):39–46. https://doi.org/10.1038/ng.3144.

Article  PubMed  CAS  Google Scholar 

Caporali L, Magri S, Legati A, Del Dotto V, Tagliavini F, Balistreri F, Nasca A, La Morgia C, Carbonelli M, Valentino ML, Lamantea E, Baratta S, Schöls L, Schüle R, Barboni P, Cascavilla ML, Maresca A, Capristo M, Ardissone A, Pareyson D, Cammarata G, Melzi L, Zeviani M, Peverelli L, Lamperti C, Marzoli SB, Fang M, Synofzik M, Ghezzi D, Carelli V, Taroni F. ATPase domain AFG3L2 mutations alter OPA1 processing and cause optic neuropathy. Ann Neurol. 2020;88(1):18–32. https://doi.org/10.1002/ana.25723.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eskandrani A, AlHashem A, Ali ES, AlShahwan S, Tlili K, Hundallah K, Tabarki B. Recessive AFG3L2 mutation causes progressive microcephaly, early onset seizures, spasticity, and basal ganglia involvement. Pediatr Neurol. 2017;71:24–8. https://doi.org/10.1016/j.pediatrneurol.2017.03.019.

Article  PubMed  Google Scholar 

Calandra CR, Buda G, Vishnopolska SA, Oliveri J, Olivieri FA, Pérez Millán MI, Biagioli G, Miquelini LA, Pellene AL, Marti MA. Spastic ataxia with eye-of-the-tiger-like sign in 4 siblings due to novel compound heterozygous AFG3L2 mutation. Parkinsonism Relat Disord. 2020;73:52–4. https://doi.org/10.1016/j.parkreldis.2020.03.020.

Article  PubMed  Google Scholar 

Puchades C, Ding B, Song A, Wiseman RL, Lander GC, Glynn SE. Unique structural features of the mitochondrial AAA+ protease AFG3L2 reveal the molecular basis for activity in health and disease. Mol Cell. 2019;75(5):1073-1085.e6. https://doi.org/10.1016/j.molcel.2019.06.016.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dosi C, Galatolo D, Rubegni A, Doccini S, Pasquariello R, Nesti C, Sicca F, Barghigiani M, Battini R, Tessa A, Santorelli FM. Expanding the clinical and genetic heterogeneity of SPAX5. Ann Clin Transl Neurol. 2020;7(4):595–601. https://doi.org/10.1002/acn3.51024.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chiang HL, Fuh JL, Tsai YS, Soong BW, Liao YC, Lee YC. Expanding the phenotype of AFG3L2 mutations: late-onset autosomal recessive spinocerebellar ataxia. J Neurol Sci. 2021;15(428):117600. https://doi.org/10.1016/j.jns.2021.117600.

Article  CAS  Google Scholar 

Berkovic SF, Andermann F, Carpenter S, Wolfe LS. Progressive myoclonus epilepsies: specific causes and diagnosis. N Engl J Med. 1986;315(5):296–305. https://doi.org/10.1056/NEJM198607313150506.

Article  PubMed  CAS  Google Scholar 

van der Veen S, Zutt R, Klein C, Marras C, Berkovic SF, Caviness JN, Shibasaki H, de Koning TJ, Tijssen MAJ. Nomenclature of genetically determined myoclonus syndromes: recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov Disord. 2019;34(11):1602–13. https://doi.org/10.1002/mds.27828.

Article  PubMed  PubMed Central  Google Scholar 

Tunc S, Dulovic-Mahlow M, Baumann H, Baaske MK, Jahn M, Junker J, Münchau A, Brüggemann N, Lohmann K. Spinocerebellar ataxia type 28-phenotypic and molecular characterization of a family with heterozygous and compound-heterozygous mutations in AFG3L2. Cerebellum. 2019;18(4):817–22. https://doi.org/10.1007/s12311-019-01036-2.

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif