Glucose and redox metabolism in meiotically blocked in vitro grown mouse antral follicles

Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 2018;9:1300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Vos M, Smitz J, Woodruff TK. Fertility preservation in women with cancer. The Lancet. 2014;384:1302–10.

Article  Google Scholar 

Telfer EE. Progress and prospects for developing human immature oocytes in vitro. Reproduction. 2019;158:F45–54.

Article  CAS  PubMed  Google Scholar 

Herta AC, Lolicato F, Smitz JEJ. In vitro follicle culture in the context of IVF. Reproduction. 2018;156(1):F59–73.

Article  CAS  PubMed  Google Scholar 

Cortvrindt S. Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function? Hum Reprod Update. 2002;8:243–54.

Article  CAS  PubMed  Google Scholar 

Sánchez F, Romero S, Albuz FK, Smitz J. In vitro follicle growth under non-attachment conditions and decreased FSH levels reduces Lhcgr expression in cumulus cells and promotes oocyte developmental competence. J Assist Reprod Genet. 2012;29:141–52.

Article  PubMed  Google Scholar 

Saenz-De-Juano MD, Ivanova E, Billooye K, Herta A-C, Smitz J, Kelsey G, et al. Genome-wide assessment of DNA methylation in mouse oocytes reveals effects associated with in vitro growth, superovulation, and sexual maturity. Clin Epigenetics. 2019;11:197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Segers I, Adriaenssens T, Ozturk E, Smitz J. Acquisition and loss of oocyte meiotic and developmental competence during in vitro antral follicle growth in mouse. Fertil Steril. 2010;93:2695–700.

Article  PubMed  Google Scholar 

Sánchez F, Adriaenssens T, Romero S, Smitz J. Different follicle-stimulating hormone exposure regimens during antral follicle growth alter gene expression in the cumulus-oocyte complex in mice1. Biol Reprod. 2010;83:514–24.

Article  PubMed  Google Scholar 

Saenz-de-Juano MD, Billooye K, Smitz J, Anckaert E. The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent by in vitro follicle culture and ovulation induction. Mol Hum Reprod. 2016;22:427–41.

Article  CAS  PubMed  Google Scholar 

Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685–95.

Article  CAS  PubMed  Google Scholar 

Herta A-C, von Mengden L, Akin N, Billooye K, Coucke W, van Leersum J, et al. Characterization of carbohydrate metabolism in in vivo- and in vitro-grown and matured mouse antral follicles. Biol Reprod. 2022;107(4):998–1013.

PubMed  Google Scholar 

Sorensen RA, Wassarman PM. Relationship between growth and meiotic maturation of the mouse oocyte. Dev Biol. 1976;50:531–6.

Article  CAS  PubMed  Google Scholar 

Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65(1):126–36.

Article  PubMed  Google Scholar 

Leese HJ, Lenton EA. Glucose and lactate in human follicular fluid: concentrations and interrelationships. Hum Reprod. 1990;5(8):915–9.

Article  CAS  PubMed  Google Scholar 

Redding GP, Bronlund JE, Hart AL. Mathematical modelling of oxygen transport-limited follicle growth. Reproduction. 2007;133:1095–106.

Article  CAS  PubMed  Google Scholar 

Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology. 2005;64:992–1006.

Article  CAS  PubMed  Google Scholar 

Lim M, Thompson JG, Dunning KR. Hypoxia and ovarian function: follicle development, ovulation, oocyte maturation. REP. 2021;161:F33–40.

Article  Google Scholar 

Gosden RG, Hunter RHF, Telfer E, Torrance C, Brown N. Physiological factors underlying the formation of ovarian follicular fluid. Reproduction. 1988;82:813–25.

Article  CAS  Google Scholar 

Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Zoology. 1967;58(2):560–7.

CAS  Google Scholar 

Clark AR, Stokes YM, Lane M, Thompson JG. Mathematical modelling of oxygen concentration in bovine and murine cumulus–oocyte complexes. Reproduction. 2006;131:999–1006.

Article  CAS  PubMed  Google Scholar 

Dan-Goor M, Sasson S, Davarashvili A, Almagor M. Expression of glucose transporter and glucose uptake in human oocytes and preimplantation embryos. Hum Reprod. 1997;12:2508–10.

Article  CAS  PubMed  Google Scholar 

von Mengden L, Klamt F, Smitz J. Redox biology of human cumulus cells: basic concepts, impact on oocyte quality, and potential clinical use. Antioxid Redox Signal. 2020;32:522–35.

Article  Google Scholar 

Sanchez F, Adriaenssens T, Romero S, Smitz J. Quantification of oocyte-specific transcripts in follicle-enclosed oocytes during antral development and maturation in vitro. Mol Hum Reprod. 2009;15:539–50.

Article  CAS  PubMed  Google Scholar 

Akin N, von Mengden L, Herta A-C, Billooye K, van Leersum J, Cava-Cami B, et al. Glucose metabolism characterization during mouse in vitro maturation identifies alterations in cumulus cells†. Biol Reprod. 2021;104:902–13.

Article  PubMed  Google Scholar 

Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem. 1996;236:302–8.

Article  CAS  PubMed  Google Scholar 

Wycherley G, Kane MT, Hynes AC. Oxidative phosphorylation and the tricarboxylic acid cycle are essential for normal development of mouse ovarian follicles. Hum Reprod. 2005;20:2757–63.

Article  CAS  PubMed  Google Scholar 

Boland NI, Humpherson PG, Leese HJ, Gosden RG. Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod. 1993;48:798–806.

Article  CAS  PubMed  Google Scholar 

Stine ZE, Altman BJ, Hsieh AL, Gouw AM, Dang CV. Deregulation of the cellular energetics of cancer cells. Pathobiology of Human Disease [Internet]. Elsevier; 2014 [cited 2022 Oct 20]. [444–55 p.]. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123864567019122

Berg JM, Tymoczko JL, Gatto GJ Jr. Stryer L. 20.3 The pentose phosphate pathway generates NADPH and synthesizes five-carbon sugars. Biochemistry. 8th ed. New York: W. H. Freeman and Company; 2015. p. 601–7.

Google Scholar 

Sanchez-Lazo L, Brisard D, Elis S, Maillard V, Uzbekov R, Labas V, et al. Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine. Mol Endocrinol. 2014;28:1502–21.

Article  PubMed  PubMed Central  Google Scholar 

Lushchak OV, Piroddi M, Galli F, Lushchak VI. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep. 2014;19:8–15.

Article  CAS  PubMed  Google Scholar 

Stanton RC. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life; 2012. p. 362–9.

Google Scholar 

Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.

Article  CAS  PubMed  Google Scholar 

Akin N, Ates G, Mengden L von, Herta AC, Meriggioli C, Billooye K, et al. Effects of lactate, super-GDF9 and low oxygen tension during biphasic in vitro maturation on the bioenergetic profiles of mouse cumulus-oocyte-complex. bioRxiv; 2022. https://doi.org/10.1101/2022.11.09.514870

Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol. 1991;124:43–101.

Article  CAS  PubMed  Google Scholar 

Feng Y, Cui P, Lu X, Hsueh B, Möller Billig F, Zarnescu Yanez L, et al. CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions. Sci Rep. 2017;7:44810.

Article  PubMed  PubMed Central  Google Scholar 

Boland NI, Humpherson PG, Leese HJ, Gosden RG. Characterization of follicular energy metabolism. Hum Reprod. 1994;9:604–9.

Article  CAS  PubMed  Google Scholar 

Redding G, Bronlund J, Hart A. Theoretical investigation into the dissolved oxygen levels in follicular fluid of the developing human follicle using mathematical modeling. Reprod Fertil Dev. 2008;20:408–17.

Article  CAS  PubMed  Google Scholar 

Gook DA, Edgar DH, Lewis K, Sheedy JR, Gardner DK. Impact of oxygen concentration on adult murine pre-antral follicle development in vitro and the corresponding metabolic profile. Mol Hum Reprod. 2014;20(1):31–41.

Article  CAS  PubMed  Google Scholar 

Banwell KM, Lane M, Russell DL, Kind KL, Thompson JG. Oxygen concentration during mouse oocyte in vitro maturation affects embryo and fetal development. Hum Reprod. 2007;22:2768–75.

Article  CAS  PubMed 

Comments (0)

No login
gif