Characterization of the long noncoding RNA transcriptome in human preimplantation embryo development

Elhussein OG, Ahmed MA, Suliman SO, Yahya LI, Adam I. Epidemiology of infertility and characteristics of infertile couples requesting assisted reproduction in a low-resource setting in Africa. Sudan Fertil Res Pract. 2019;5:7. https://doi.org/10.1186/s40738-019-0060-1.

Article  PubMed  Google Scholar 

Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem. 2018;62:2–10. https://doi.org/10.1016/j.clinbiochem.2018.03.012.

Article  PubMed  Google Scholar 

Sun H, Gong TT, Jiang YT, Zhang S, Zhao YH, Wu QJ. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: results from a global burden of disease study, 2017. Aging (Albany NY). 2019;11:10952–91. https://doi.org/10.18632/aging.102497.

Article  PubMed  Google Scholar 

Kobayashi T, Ishikawa H, Ishii K, Sato A, Nakamura N, Saito Y, et al. Time-lapse monitoring of fertilized human oocytes focused on the incidence of 0PN embryos in conventional in vitro fertilization cycles. Sci Rep. 2021;11:18862. https://doi.org/10.1038/s41598-021-98312-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang H, Luo Z, Lin C. Epigenetic reorganization during early embryonic lineage specification. Genes Genomics. 2022;44:379–87. https://doi.org/10.1007/s13258-021-01213-w.

Article  CAS  PubMed  Google Scholar 

Liu W, Chen J, Yang C, Lee KF, Lee YL, Chiu PC, et al. Expression of microRNA let-7 in cleavage embryos modulates cell fate determination and formation of mouse blastocystsdagger. Biol Reprod. 2022;107:1452–63. https://doi.org/10.1093/biolre/ioac181.

Article  PubMed  Google Scholar 

Wamaitha SE, Niakan KK. Human Pre-gastrulation Development. Curr Top Dev Biol. 2018;128:295–338. https://doi.org/10.1016/bs.ctdb.2017.11.004.

Article  CAS  PubMed  Google Scholar 

Niakan KK, Han J, Pedersen RA, Simon C, Pera RA. Human pre-implantation embryo development. Development. 2012;139:829–41. https://doi.org/10.1242/dev.060426.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023. https://doi.org/10.1038/s41580-022-00566-8.

Article  PubMed  Google Scholar 

Sun W, Yang Y, Xu C, Guo J. Regulatory mechanisms of long noncoding RNAs on gene expression in cancers. Cancer Genet. 2017;216–217:105–10. https://doi.org/10.1016/j.cancergen.2017.06.003.

Article  CAS  PubMed  Google Scholar 

Han P, Chang CP. Long non-coding RNA and chromatin remodeling. RNA Biol. 2015;12:1094–8. https://doi.org/10.1080/15476286.2015.1063770.

Article  PubMed  PubMed Central  Google Scholar 

Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription? Sci Adv. 2017;3:eaao2110. https://doi.org/10.1126/sciadv.aao2110.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A, Santin I. The Role of lncRNAs in Gene Expression Regulation through mRNA Stabilization. Noncoding RNA. 2021;7:3. https://doi.org/10.3390/ncrna7010003

Karakas D, Ozpolat B. The Role of LncRNAs in Translation. Noncoding RNA. 2021;7:16. https://doi.org/10.3390/ncrna7010016

Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, et al. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update. 2016;23:19–40. https://doi.org/10.1093/humupd/dmw035.

Article  CAS  PubMed  Google Scholar 

Dang Y, Yan L, Hu B, Fan X, Ren Y, Li R, et al. Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol. 2016;17:130. https://doi.org/10.1186/s13059-016-0991-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;165:1012–26. https://doi.org/10.1016/j.cell.2016.03.023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesarik J. Control of maternal-to-zygotic transition in human embryos and other animal species (especially mouse): similarities and differences. Int J Mol Sci. 2022;23:8562. https://doi.org/10.3390/ijms23158562

Viegas JO, Meshorer E. the princess and the P: Pluripotent stem cells and P-bodies. Cell Stem Cell. 2019;25:589–91. https://doi.org/10.1016/j.stem.2019.10.008.

Article  CAS  PubMed  Google Scholar 

Viegas JO, Azad GK, Lv Y, Fishman L, Paltiel T, Pattabiraman S, et al. RNA degradation eliminates developmental transcripts during murine embryonic stem cell differentiation via CAPRIN1-XRN2. Dev Cell. 2022;57:2731-2744e2735. https://doi.org/10.1016/j.devcel.2022.11.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma X, Renda MJ, Wang L, Cheng EC, Niu C, Morris SW, et al. Rbm15 modulates Notch-induced transcriptional activation and affects myeloid differentiation. Mol Cell Biol. 2007;27:3056–64. https://doi.org/10.1128/MCB.01339-06.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neumann DP, Goodall GJ, Gregory PA. The Quaking RNA-binding proteins as regulators of cell differentiation. Wiley Interdiscip Rev RNA. 2022;13:e1724. https://doi.org/10.1002/wrna.1724.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Yang Y, Fan J, Xu H, Fan L, Li H, Zhao RC. Long noncoding RNA ANCR inhibits the differentiation of mesenchymal stem cells toward definitive endoderm by facilitating the association of PTBP1 with ID2. Cell Death Dis. 2019;10:492. https://doi.org/10.1038/s41419-019-1738-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chembazhi UV, Tung WS, Hwang H, Wang Y, Lalwani A, Nguyen KL, et al. PTBP1 controls intestinal epithelial regeneration through post-transcriptional regulation of gene expression. Nucleic Acids Res. 2023. https://doi.org/10.1093/nar/gkad042.

Article  PubMed  PubMed Central  Google Scholar 

Kim J, Muraoka M, Okada H, Toyoda A, Ajima R, Saga Y. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. PLoS Genet. 2022;18:e1009967. https://doi.org/10.1371/journal.pgen.1009967.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cirera-Salinas D, Yu J, Bodak M, Ngondo RP, Herbert KM, Ciaudo C. Noncanonical function of DGCR8 controls mESC exit from pluripotency. J Cell Biol. 2017;216:355–66. https://doi.org/10.1083/jcb.201606073.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamaji M, Tanaka T, Shigeta M, Chuma S, Saga Y, Saitou M. Functional reconstruction of NANOS3 expression in the germ cell lineage by a novel transgenic reporter reveals distinct subcellular localizations of NANOS3. Reproduction. 2010;139:381–93. https://doi.org/10.1530/REP-09-0373.

Article  CAS  PubMed  Google Scholar 

You KT, Park J, Kim VN. Role of the small subunit processome in the maintenance of pluripotent stem cells. Genes Dev. 2015;29:2004–9. https://doi.org/10.1101/gad.267112.115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, et al. LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell. 2016;19:66–80. https://doi.org/10.1016/j.stem.2016.05.009.

Article  CAS  PubMed  Google Scholar 

Adachi K, Suemori H, Yasuda SY, Nakatsuji N, Kawase E. Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells. 2010;15:455–70. https://doi.org/10.1111/j.1365-2443.2010.01400.x.

Article  CAS  PubMed  Google Scholar 

Pan G, Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007;17:42–9. https://doi.org/10.1038/sj.cr.7310125.

Article  CAS  PubMed  Google Scholar 

Xu C, Zhang Y, Wang Q, Xu Z, Jiang J, Gao Y, et al. Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling. Nat Commun. 2016;7:13287. https://doi.org/10.1038/ncomms13287.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Y, Liu Q, Liao M, Diao L, Wu T, Liao W, et al. Overexpression of lncRNA EPB41L4A-AS1 induces metabolic reprogramming in trophoblast cells and placenta tissue of miscarriage. Mol Ther Nucleic Acids. 2019;18:518–32. https://doi.org/10.1016/j.omtn.2019.09.017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hupalowska A, Jedrusik A, Zhu M, Bedford MT, Glover DM, Zernicka-Goetz M. CARM1 and paraspeckles regulate pre-implantation mouse embryo development. Cell. 2018;175:1902-1916e1913. https://doi.org/10.1016/j.cell.2018.11.027.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif