Elhussein OG, Ahmed MA, Suliman SO, Yahya LI, Adam I. Epidemiology of infertility and characteristics of infertile couples requesting assisted reproduction in a low-resource setting in Africa. Sudan Fertil Res Pract. 2019;5:7. https://doi.org/10.1186/s40738-019-0060-1.
Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem. 2018;62:2–10. https://doi.org/10.1016/j.clinbiochem.2018.03.012.
Sun H, Gong TT, Jiang YT, Zhang S, Zhao YH, Wu QJ. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: results from a global burden of disease study, 2017. Aging (Albany NY). 2019;11:10952–91. https://doi.org/10.18632/aging.102497.
Kobayashi T, Ishikawa H, Ishii K, Sato A, Nakamura N, Saito Y, et al. Time-lapse monitoring of fertilized human oocytes focused on the incidence of 0PN embryos in conventional in vitro fertilization cycles. Sci Rep. 2021;11:18862. https://doi.org/10.1038/s41598-021-98312-1.
Article CAS PubMed PubMed Central Google Scholar
Fang H, Luo Z, Lin C. Epigenetic reorganization during early embryonic lineage specification. Genes Genomics. 2022;44:379–87. https://doi.org/10.1007/s13258-021-01213-w.
Article CAS PubMed Google Scholar
Liu W, Chen J, Yang C, Lee KF, Lee YL, Chiu PC, et al. Expression of microRNA let-7 in cleavage embryos modulates cell fate determination and formation of mouse blastocystsdagger. Biol Reprod. 2022;107:1452–63. https://doi.org/10.1093/biolre/ioac181.
Wamaitha SE, Niakan KK. Human Pre-gastrulation Development. Curr Top Dev Biol. 2018;128:295–338. https://doi.org/10.1016/bs.ctdb.2017.11.004.
Article CAS PubMed Google Scholar
Niakan KK, Han J, Pedersen RA, Simon C, Pera RA. Human pre-implantation embryo development. Development. 2012;139:829–41. https://doi.org/10.1242/dev.060426.
Article CAS PubMed PubMed Central Google Scholar
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023. https://doi.org/10.1038/s41580-022-00566-8.
Sun W, Yang Y, Xu C, Guo J. Regulatory mechanisms of long noncoding RNAs on gene expression in cancers. Cancer Genet. 2017;216–217:105–10. https://doi.org/10.1016/j.cancergen.2017.06.003.
Article CAS PubMed Google Scholar
Han P, Chang CP. Long non-coding RNA and chromatin remodeling. RNA Biol. 2015;12:1094–8. https://doi.org/10.1080/15476286.2015.1063770.
Article PubMed PubMed Central Google Scholar
Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription? Sci Adv. 2017;3:eaao2110. https://doi.org/10.1126/sciadv.aao2110.
Article CAS PubMed PubMed Central Google Scholar
Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A, Santin I. The Role of lncRNAs in Gene Expression Regulation through mRNA Stabilization. Noncoding RNA. 2021;7:3. https://doi.org/10.3390/ncrna7010003
Karakas D, Ozpolat B. The Role of LncRNAs in Translation. Noncoding RNA. 2021;7:16. https://doi.org/10.3390/ncrna7010016
Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, et al. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update. 2016;23:19–40. https://doi.org/10.1093/humupd/dmw035.
Article CAS PubMed Google Scholar
Dang Y, Yan L, Hu B, Fan X, Ren Y, Li R, et al. Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol. 2016;17:130. https://doi.org/10.1186/s13059-016-0991-3.
Article CAS PubMed PubMed Central Google Scholar
Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;165:1012–26. https://doi.org/10.1016/j.cell.2016.03.023.
Article CAS PubMed PubMed Central Google Scholar
Tesarik J. Control of maternal-to-zygotic transition in human embryos and other animal species (especially mouse): similarities and differences. Int J Mol Sci. 2022;23:8562. https://doi.org/10.3390/ijms23158562
Viegas JO, Meshorer E. the princess and the P: Pluripotent stem cells and P-bodies. Cell Stem Cell. 2019;25:589–91. https://doi.org/10.1016/j.stem.2019.10.008.
Article CAS PubMed Google Scholar
Viegas JO, Azad GK, Lv Y, Fishman L, Paltiel T, Pattabiraman S, et al. RNA degradation eliminates developmental transcripts during murine embryonic stem cell differentiation via CAPRIN1-XRN2. Dev Cell. 2022;57:2731-2744e2735. https://doi.org/10.1016/j.devcel.2022.11.014.
Article CAS PubMed PubMed Central Google Scholar
Ma X, Renda MJ, Wang L, Cheng EC, Niu C, Morris SW, et al. Rbm15 modulates Notch-induced transcriptional activation and affects myeloid differentiation. Mol Cell Biol. 2007;27:3056–64. https://doi.org/10.1128/MCB.01339-06.
Article CAS PubMed PubMed Central Google Scholar
Neumann DP, Goodall GJ, Gregory PA. The Quaking RNA-binding proteins as regulators of cell differentiation. Wiley Interdiscip Rev RNA. 2022;13:e1724. https://doi.org/10.1002/wrna.1724.
Article CAS PubMed PubMed Central Google Scholar
Li J, Yang Y, Fan J, Xu H, Fan L, Li H, Zhao RC. Long noncoding RNA ANCR inhibits the differentiation of mesenchymal stem cells toward definitive endoderm by facilitating the association of PTBP1 with ID2. Cell Death Dis. 2019;10:492. https://doi.org/10.1038/s41419-019-1738-3.
Article CAS PubMed PubMed Central Google Scholar
Chembazhi UV, Tung WS, Hwang H, Wang Y, Lalwani A, Nguyen KL, et al. PTBP1 controls intestinal epithelial regeneration through post-transcriptional regulation of gene expression. Nucleic Acids Res. 2023. https://doi.org/10.1093/nar/gkad042.
Article PubMed PubMed Central Google Scholar
Kim J, Muraoka M, Okada H, Toyoda A, Ajima R, Saga Y. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. PLoS Genet. 2022;18:e1009967. https://doi.org/10.1371/journal.pgen.1009967.
Article CAS PubMed PubMed Central Google Scholar
Cirera-Salinas D, Yu J, Bodak M, Ngondo RP, Herbert KM, Ciaudo C. Noncanonical function of DGCR8 controls mESC exit from pluripotency. J Cell Biol. 2017;216:355–66. https://doi.org/10.1083/jcb.201606073.
Article CAS PubMed PubMed Central Google Scholar
Yamaji M, Tanaka T, Shigeta M, Chuma S, Saga Y, Saitou M. Functional reconstruction of NANOS3 expression in the germ cell lineage by a novel transgenic reporter reveals distinct subcellular localizations of NANOS3. Reproduction. 2010;139:381–93. https://doi.org/10.1530/REP-09-0373.
Article CAS PubMed Google Scholar
You KT, Park J, Kim VN. Role of the small subunit processome in the maintenance of pluripotent stem cells. Genes Dev. 2015;29:2004–9. https://doi.org/10.1101/gad.267112.115.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, et al. LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell. 2016;19:66–80. https://doi.org/10.1016/j.stem.2016.05.009.
Article CAS PubMed Google Scholar
Adachi K, Suemori H, Yasuda SY, Nakatsuji N, Kawase E. Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells. 2010;15:455–70. https://doi.org/10.1111/j.1365-2443.2010.01400.x.
Article CAS PubMed Google Scholar
Pan G, Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007;17:42–9. https://doi.org/10.1038/sj.cr.7310125.
Article CAS PubMed Google Scholar
Xu C, Zhang Y, Wang Q, Xu Z, Jiang J, Gao Y, et al. Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling. Nat Commun. 2016;7:13287. https://doi.org/10.1038/ncomms13287.
Article CAS PubMed PubMed Central Google Scholar
Zhu Y, Liu Q, Liao M, Diao L, Wu T, Liao W, et al. Overexpression of lncRNA EPB41L4A-AS1 induces metabolic reprogramming in trophoblast cells and placenta tissue of miscarriage. Mol Ther Nucleic Acids. 2019;18:518–32. https://doi.org/10.1016/j.omtn.2019.09.017.
Article CAS PubMed PubMed Central Google Scholar
Hupalowska A, Jedrusik A, Zhu M, Bedford MT, Glover DM, Zernicka-Goetz M. CARM1 and paraspeckles regulate pre-implantation mouse embryo development. Cell. 2018;175:1902-1916e1913. https://doi.org/10.1016/j.cell.2018.11.027.
Comments (0)