Impact of human ovarian tissue manipulation on follicles: evidence of a potential first wave of follicle activation during fertility preservation procedures

Shaw JM, Oranratnachai A, Trounson AO. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology. 2000;53(1):59–72. https://doi.org/10.1016/s0093-691x(99)00240-x.

Article  CAS  PubMed  Google Scholar 

Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30(5):438–64. https://doi.org/10.1210/er.2008-0048.

Article  CAS  PubMed  Google Scholar 

John GB, Gallardo TD, Shirley LJ, Castrillon DH. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol. 2008;321(1):197–204. https://doi.org/10.1016/j.ydbio.2008.06.017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hämäläinen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319(5863):611–3. https://doi.org/10.1126/science.1152257.

Article  CAS  PubMed  Google Scholar 

Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36(1):1–24. https://doi.org/10.1210/er.2014-1020.

Article  CAS  PubMed  Google Scholar 

Masciangelo R, Hossay C, Donnez J, Dolmans MM. Does the Akt pathway play a role in follicle activation after grafting of human ovarian tissue? Reprod Biomed Online. 2019;39(2):196–8. https://doi.org/10.1016/j.rbmo.2019.04.007.

Article  CAS  PubMed  Google Scholar 

Grosbois J, Demeestere I. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum Reprod. 2018;33(9):1705–14. https://doi.org/10.1093/humrep/dey250.

Article  CAS  PubMed  Google Scholar 

Devos M, Grosbois J, Demeestere I. Interaction between PI3K/AKT and Hippo pathways during in vitro follicular activation and response to fragmentation and chemotherapy exposure using a mouse immature ovary model. Biol Reprod. 2020;102(3):717–29. https://doi.org/10.1093/biolre/ioz215.

Article  PubMed  Google Scholar 

Grosbois J, Devos M, Demeestere I. Implications of nonphysiological ovarian primordial follicle activation for fertility preservation. Endocr Rev. 2020;41(6):bnaa020. https://doi.org/10.1210/endrev/bnaa020.

Article  PubMed  Google Scholar 

Dolmans MM, Martinez-Madrid B, Gadisseux E, Guiot Y, Yuan WY, Torre A, Camboni A, Van Langendonckt A, Donnez J. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction. 2007;134:253–62.

Article  CAS  PubMed  Google Scholar 

Telfer EE, Andersen CY. In vitro growth and maturation of primordial follicles and immature oocytes. Fertil Steril. 2021;115(5):1116–25. https://doi.org/10.1016/j.fertnstert.2021.03.004.

Article  CAS  PubMed  Google Scholar 

Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA. 2013;110:17474–9. https://doi.org/10.1073/pnas.1312830110.

Article  PubMed  PubMed Central  Google Scholar 

Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30:608–15. https://doi.org/10.1093/humrep/deu353.

Article  PubMed  Google Scholar 

Smitz JE, Cortvrindt RG. The earliest stages of folliculogenesis in vitro. Reproduction. 2002;123(2):185–202. https://doi.org/10.1530/rep.0.1230185.

Article  CAS  PubMed  Google Scholar 

Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: implications for primordial follicle activation, oocyte quality and ageing. Cells. 2020;9(1):200. https://doi.org/10.3390/cells9010200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolmans MM, Cordier F, Amorim CA, Donnez J, Vander LC. In vitro activation prior to transplantation of human ovarian tissue: is it truly effective? Front Endocrinol (Lausanne). 2019;2(10):520. https://doi.org/10.3389/fendo.2019.00520.

Article  Google Scholar 

Hossay C, Tramacere F, Cacciottola L, Camboni A, Squifflet JL, Donnez J, Dolmans MM. Follicle outcomes in human ovarian tissue: effect of freezing, culture, and grafting. Fertil Steril. 2023;119(1):135–45. https://doi.org/10.1016/j.fertnstert.2022.09.360.

Article  PubMed  Google Scholar 

Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987;81(2):433–42. https://doi.org/10.1530/jrf.0.0810433.

Article  CAS  PubMed  Google Scholar 

Landini G, Martinelli G, Piccinini F. Colour deconvolution: stain unmixing in histological imaging. Bioinformatics. 2021;37(10):1485–7. https://doi.org/10.1093/bioinformatics/btaa847.

Article  CAS  PubMed  Google Scholar 

Cacciottola L, Donnez J, Dolmans MM. Ovarian tissue damage after grafting: systematic review of strategies to improve follicle outcomes. Reprod Biomed Online. 2021;43(3):351–69. https://doi.org/10.1016/j.rbmo.2021.06.019.

Article  PubMed  Google Scholar 

Masciangelo R, Hossay C, Chiti MC, Manavella DD, Amorim CA, Donnez J, Dolmans MM. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue. J Assist Reprod Genet. 2020;37(1):101–8.

Article  PubMed  Google Scholar 

Cacciottola L, Courtoy GE, Nguyen TYT, Hossay C, Donnez J, Dolmans MM. Adipose tissue-derived stem cells protect the primordial follicle pool from both direct follicle death and abnormal activation after ovarian tissue transplantation. J Assist Reprod Genet. 2021;38(1):151–61.

Article  PubMed  Google Scholar 

Devos M. Paula Diaz Vidal, Jason Bouziotis, Ellen Anckaert, Marie-Madeleine Dolmans, Isabelle Demeestere, Impact of first chemotherapy exposure on follicle activation and survival in human cryopreserved ovarian tissue. Human Reprod. 2023;38(3):408–20. https://doi.org/10.1093/humrep/dead013.

Article  CAS  Google Scholar 

Reuven N, Shanzer M, Shaul Y. Hippo pathway regulation by tyrosine kinases. Methods Mol Biol. 2019;1893:215–36. https://doi.org/10.1007/978-1-4939-8910-2_17.

Article  CAS  PubMed  Google Scholar 

Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: the therapeutic targets in cancer. Seminars in Cancer Biology. 2019; https://doi.org/10.1016/j.semcancer.2019.03.006.

Shiratsuki S, Hara T, Munakata Y, Shirasuna K, Kuwayama T, Iwata H. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells. Mol Cell Endocrinol. 2016;5(437):75–85. https://doi.org/10.1016/j.mce.2016.08.010.

Article  CAS  Google Scholar 

Woodruff TK, Shea LD. A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J Assist Reprod Genet. 2011;28(1):3–6. https://doi.org/10.1007/s10815-010-9478-4.

Article  PubMed  Google Scholar 

Ding CC, Thong KJ, Krishna A, Telfer EE. Activin A inhibits activation of human primordial follicles in vitro. J Assist Reprod Genet. 2010;27(4):141–7. https://doi.org/10.1007/s10815-010-9395-6.

Article  PubMed  PubMed Central  Google Scholar 

Kezele P, Skinner MK. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003;144(8):3329–37. https://doi.org/10.1210/en.2002-0131.

Article  CAS  PubMed  Google Scholar 

Lunding SA, Andersen AN, Hardardottir L, Olesen HØ, Kristensen SG, Andersen CY, Pors SE. Hippo signaling, actin polymerization, and follicle activation in fragmented human ovarian cortex. Mol Reprod Dev. 2020;87(6):711–9. https://doi.org/10.1002/mrd.23353.

Article  CAS  PubMed  Google Scholar 

Kawamura K, Kawamura N, Hsueh AJ. Activation of dormant follicles: a new treatment for premature ovarian failure? Curr Opin Obstet Gynecol. 2016;28(3):217–22. https://doi.org/10.1097/GCO.0000000000000268.

Article  PubMed  PubMed Central  Google Scholar 

Díaz-García C, Herraiz S, Pamplona L, Subirá J, Soriano MJ, Simon C, Seli E, Pellicer A. Follicular activation in women previously diagnosed with poor ovarian response: a randomized, controlled trial. Fertil Steril. 2022;117(4):747–55. https://doi.org/10.1016/j.fertnstert.2021.12.034.

Article  PubMed  Google Scholar 

Griesinger G, Fauser BCJM. Drug-free in-vitro activation of ovarian cortex; can it really activate the ‘ovarian gold reserve’? Reprod Biomed Online. 2020;40(2):187–9. https://doi.org/10.1016/j.rbmo.2020.01.012.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif