Shaw JM, Oranratnachai A, Trounson AO. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology. 2000;53(1):59–72. https://doi.org/10.1016/s0093-691x(99)00240-x.
Article CAS PubMed Google Scholar
Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30(5):438–64. https://doi.org/10.1210/er.2008-0048.
Article CAS PubMed Google Scholar
John GB, Gallardo TD, Shirley LJ, Castrillon DH. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol. 2008;321(1):197–204. https://doi.org/10.1016/j.ydbio.2008.06.017.
Article CAS PubMed PubMed Central Google Scholar
Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hämäläinen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319(5863):611–3. https://doi.org/10.1126/science.1152257.
Article CAS PubMed Google Scholar
Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36(1):1–24. https://doi.org/10.1210/er.2014-1020.
Article CAS PubMed Google Scholar
Masciangelo R, Hossay C, Donnez J, Dolmans MM. Does the Akt pathway play a role in follicle activation after grafting of human ovarian tissue? Reprod Biomed Online. 2019;39(2):196–8. https://doi.org/10.1016/j.rbmo.2019.04.007.
Article CAS PubMed Google Scholar
Grosbois J, Demeestere I. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum Reprod. 2018;33(9):1705–14. https://doi.org/10.1093/humrep/dey250.
Article CAS PubMed Google Scholar
Devos M, Grosbois J, Demeestere I. Interaction between PI3K/AKT and Hippo pathways during in vitro follicular activation and response to fragmentation and chemotherapy exposure using a mouse immature ovary model. Biol Reprod. 2020;102(3):717–29. https://doi.org/10.1093/biolre/ioz215.
Grosbois J, Devos M, Demeestere I. Implications of nonphysiological ovarian primordial follicle activation for fertility preservation. Endocr Rev. 2020;41(6):bnaa020. https://doi.org/10.1210/endrev/bnaa020.
Dolmans MM, Martinez-Madrid B, Gadisseux E, Guiot Y, Yuan WY, Torre A, Camboni A, Van Langendonckt A, Donnez J. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction. 2007;134:253–62.
Article CAS PubMed Google Scholar
Telfer EE, Andersen CY. In vitro growth and maturation of primordial follicles and immature oocytes. Fertil Steril. 2021;115(5):1116–25. https://doi.org/10.1016/j.fertnstert.2021.03.004.
Article CAS PubMed Google Scholar
Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA. 2013;110:17474–9. https://doi.org/10.1073/pnas.1312830110.
Article PubMed PubMed Central Google Scholar
Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30:608–15. https://doi.org/10.1093/humrep/deu353.
Smitz JE, Cortvrindt RG. The earliest stages of folliculogenesis in vitro. Reproduction. 2002;123(2):185–202. https://doi.org/10.1530/rep.0.1230185.
Article CAS PubMed Google Scholar
Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: implications for primordial follicle activation, oocyte quality and ageing. Cells. 2020;9(1):200. https://doi.org/10.3390/cells9010200.
Article CAS PubMed PubMed Central Google Scholar
Dolmans MM, Cordier F, Amorim CA, Donnez J, Vander LC. In vitro activation prior to transplantation of human ovarian tissue: is it truly effective? Front Endocrinol (Lausanne). 2019;2(10):520. https://doi.org/10.3389/fendo.2019.00520.
Hossay C, Tramacere F, Cacciottola L, Camboni A, Squifflet JL, Donnez J, Dolmans MM. Follicle outcomes in human ovarian tissue: effect of freezing, culture, and grafting. Fertil Steril. 2023;119(1):135–45. https://doi.org/10.1016/j.fertnstert.2022.09.360.
Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987;81(2):433–42. https://doi.org/10.1530/jrf.0.0810433.
Article CAS PubMed Google Scholar
Landini G, Martinelli G, Piccinini F. Colour deconvolution: stain unmixing in histological imaging. Bioinformatics. 2021;37(10):1485–7. https://doi.org/10.1093/bioinformatics/btaa847.
Article CAS PubMed Google Scholar
Cacciottola L, Donnez J, Dolmans MM. Ovarian tissue damage after grafting: systematic review of strategies to improve follicle outcomes. Reprod Biomed Online. 2021;43(3):351–69. https://doi.org/10.1016/j.rbmo.2021.06.019.
Masciangelo R, Hossay C, Chiti MC, Manavella DD, Amorim CA, Donnez J, Dolmans MM. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue. J Assist Reprod Genet. 2020;37(1):101–8.
Cacciottola L, Courtoy GE, Nguyen TYT, Hossay C, Donnez J, Dolmans MM. Adipose tissue-derived stem cells protect the primordial follicle pool from both direct follicle death and abnormal activation after ovarian tissue transplantation. J Assist Reprod Genet. 2021;38(1):151–61.
Devos M. Paula Diaz Vidal, Jason Bouziotis, Ellen Anckaert, Marie-Madeleine Dolmans, Isabelle Demeestere, Impact of first chemotherapy exposure on follicle activation and survival in human cryopreserved ovarian tissue. Human Reprod. 2023;38(3):408–20. https://doi.org/10.1093/humrep/dead013.
Reuven N, Shanzer M, Shaul Y. Hippo pathway regulation by tyrosine kinases. Methods Mol Biol. 2019;1893:215–36. https://doi.org/10.1007/978-1-4939-8910-2_17.
Article CAS PubMed Google Scholar
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: the therapeutic targets in cancer. Seminars in Cancer Biology. 2019; https://doi.org/10.1016/j.semcancer.2019.03.006.
Shiratsuki S, Hara T, Munakata Y, Shirasuna K, Kuwayama T, Iwata H. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells. Mol Cell Endocrinol. 2016;5(437):75–85. https://doi.org/10.1016/j.mce.2016.08.010.
Woodruff TK, Shea LD. A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J Assist Reprod Genet. 2011;28(1):3–6. https://doi.org/10.1007/s10815-010-9478-4.
Ding CC, Thong KJ, Krishna A, Telfer EE. Activin A inhibits activation of human primordial follicles in vitro. J Assist Reprod Genet. 2010;27(4):141–7. https://doi.org/10.1007/s10815-010-9395-6.
Article PubMed PubMed Central Google Scholar
Kezele P, Skinner MK. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003;144(8):3329–37. https://doi.org/10.1210/en.2002-0131.
Article CAS PubMed Google Scholar
Lunding SA, Andersen AN, Hardardottir L, Olesen HØ, Kristensen SG, Andersen CY, Pors SE. Hippo signaling, actin polymerization, and follicle activation in fragmented human ovarian cortex. Mol Reprod Dev. 2020;87(6):711–9. https://doi.org/10.1002/mrd.23353.
Article CAS PubMed Google Scholar
Kawamura K, Kawamura N, Hsueh AJ. Activation of dormant follicles: a new treatment for premature ovarian failure? Curr Opin Obstet Gynecol. 2016;28(3):217–22. https://doi.org/10.1097/GCO.0000000000000268.
Article PubMed PubMed Central Google Scholar
Díaz-García C, Herraiz S, Pamplona L, Subirá J, Soriano MJ, Simon C, Seli E, Pellicer A. Follicular activation in women previously diagnosed with poor ovarian response: a randomized, controlled trial. Fertil Steril. 2022;117(4):747–55. https://doi.org/10.1016/j.fertnstert.2021.12.034.
Griesinger G, Fauser BCJM. Drug-free in-vitro activation of ovarian cortex; can it really activate the ‘ovarian gold reserve’? Reprod Biomed Online. 2020;40(2):187–9. https://doi.org/10.1016/j.rbmo.2020.01.012.
Comments (0)