Park N-H, Shin K-H, Kang MK. 34 - Antifungal and antiviral agents. In: Pharmacology and therapeutics for dentistry (Seventh Edition). edn. Edited by Dowd FJ, Johnson BS, Mariotti AJ: Mosby; 2017: 488–503.
El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER, El-Nabarawi MA. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Delivery. 2018;25(1):78–90.
Article CAS PubMed Google Scholar
Rai VK, Dwivedi H, Yadav NP, Chanotiya CS, Saraf SA. Solubility enhancement of miconazole nitrate: binary and ternary mixture approach. Drug Dev Ind Pharm. 2014;40(8):1021–9.
Article CAS PubMed Google Scholar
Anonymous. Luliconazole. In: CSID:8039103. http://www.chemspider.com/Chemical-Structure.8039103.html. Accessed 3 Nov 2023.
Walicka A, Iwanowska-Chomiak B. Drug diffusion transport through human skin. Int J Appl Mech Eng. 2018;23:977–88.
Garg AK, Maddiboyina B, Alqarni MHS, Alam A, Aldawsari HM, Rawat P, Singh S, Kesharwani P. Solubility enhancement, formulation development and antifungal activity of luliconazole niosomal gel-based system. J Biomater Sci Polym Ed. 2021;32(8):1009–23.
Article CAS PubMed Google Scholar
Dehari D, Mehata AK, Priya V, Parbat D, Kumar D, Srivastava AK, Singh S, Agrawal AK. Luliconazole nail lacquer for the treatment of onychomycosis: formulation, characterization and in vitro and ex vivo evaluation. AAPS PharmSciTech. 2022;23(6):175.
Article CAS PubMed Google Scholar
Panthi VK, Nepal U. Formulation and development of a water-in-oil emulsion-based luliconazole cream: un vitro characterization and analytical method validation by RP-HPLC. Int J A Chem. 2022;2022:7273840.
Alhakamy NA, Al-Rabia MW, Md S, Sirwi A, Khayat SS, AlOtaibi SS, Hakami RA, Al Sadoun H, Eldakhakhny BM, Abdulaal WH, et al. Development and optimization of luliconazole spanlastics to augment the antifungal activity against Candida albicans. Pharmaceutics. 2021;13(7).
Küchler S, Herrmann W, Panek-Minkin G, Blaschke T, Zoschke C, Kramer KD, Bittl R, Schäfer-Korting M. SLN for topical application in skin diseases—characterization of drug–carrier and carrier–target interactions. Int J Pharm. 2010;390(2):225–33.
Moussa Y, Teaima M, Attia D, Elmazar M, El-Nabarawi M. Unroasted green coffee extract-loaded solid lipid nanoparticles for enhancing intestinal permeation. ACS Omega. 2023;8.
Ravi PR, Vats R, Dalal V, Gadekar N. N A: Design, optimization and evaluation of poly-ε-caprolactone (PCL) based polymeric nanoparticles for oral delivery of lopinavir. Drug Dev Ind Pharm. 2015;41(1):131–40.
Article CAS PubMed Google Scholar
Chaudhary H, Kohli K, Amin S, Rathee P, Kumar V. Optimization and formulation design of gels of diclofenac and curcumin for transdermal drug delivery by Box-Behnken statistical design. J Pharm Sci. 2011;100(2):580–93.
Article CAS PubMed Google Scholar
Rai VK, Yadav NP, Sinha P, Mishra N, Luqman S, Dwivedi H, Kymonil KM, Saraf SA. Development of cellulosic polymer based gel of novel ternary mixture of miconazole nitrate for buccal delivery. Carbohydr Polym. 2014;103:126–33.
Article CAS PubMed Google Scholar
Kumar V, Ain S, Kumar B, Ain Q, Gaurav. Optimization and evaluation of topical gel containing solid lipid nanoparticles loaded with luliconazole and its anti-fungal activity. 2020;12.
Kandadi P, Syed MA, Goparaboina S, Veerabrahma K. Albumin coupled lipid nanoemulsions of diclofenac for targeted delivery to inflammation. Nanomedicine. 2012;8(7):1162–71.
Article CAS PubMed Google Scholar
Sharma A, Mehta V, Parashar A, Patrwal R, Malairaman U. Solid lipid nanoparticle: fabricated through nanoprecipitation and their physicochemical characterization. Int J Pharm Pharm Sci. 2016;8:144–8.
Rapalli VK, Sharma S, Roy A, Alexander A, Singhvi G. Solid lipid nanocarriers embedded hydrogel for topical delivery of apremilast: in-vitro, ex-vivo, dermatopharmacokinetic and anti-psoriatic evaluation. J Drug Delivery Sci Technol. 2021;63:102442.
Patravale VB, Mirani AG. Preparation and characterization of solid lipid nanoparticles-based gel for topical delivery. In: Pharmaceutical Nanotechnology: Basic Protocols. edn. Edited by Weissig V, Elbayoumi T. New York, NY: Springer New York; 2019: 293–302.
Hussain A, Samad A, Singh SK, Ahsan MN, Haque MW, Faruk A, Ahmed FJ. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Delivery. 2015:1–16.
Khandavilli S, Panchagnula R. Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Dermatol. 2007;127(1):154–62.
Article CAS PubMed Google Scholar
Zhang YT, Shen LN, Zhao JH, Feng NP. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis. Int J Nanomed. 2014;9:669–78.
Maurya A, Murthy SN. Pretreatment with skin permeability enhancers: importance of duration and composition on the delivery of diclofenac sodium. J Pharm Sci. 2014;103(5):1497–503.
Article CAS PubMed Google Scholar
Mare AD, Ciurea CN, Man A, Mareș M, Toma F, Berța L, Tanase C. In vitro antifungal activity of silver nanoparticles biosynthesized with beech bark extract. Plants (Basel, Switzerland). 2021;10(10).
Alvarado-Gomez E, Martínez-Castañon G, Sanchez-Sanchez R, Ganem-Rondero A, Yacaman MJ, Martinez-Gutierrez F. Evaluation of anti-biofilm and cytotoxic effect of a gel formulation with Pluronic F-127 and silver nanoparticles as a potential treatment for skin wounds. Mater Sci Eng, C. 2018;92:621–30.
Shrestha S, Pakhrin S, Maharjan S, GC R, Giri S, Thapa N, Jeevan R, Shrestha J. UV spectrophotometric determination of luliconazole semisolid dosage form. 2021.
Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun. 2020;11(1):2337.
Article CAS PubMed PubMed Central Google Scholar
Arora R, Aggarwal G, Harikumar SL, Kaur K. Nanoemulsion based hydrogel for enhanced transdermal delivery of ketoprofen. Adv Pharm. 2014;2014:468456.
Arora D, Nanda S. Quality by design driven development of resveratrol loaded ethosomal hydrogel for improved dermatological benefits via enhanced skin permeation and retention. Int J Pharm. 2019;567:118448.
Article CAS PubMed Google Scholar
Blanco MT, Pérez-Giraldo C, Blanco J, Morán FJ, Hurtado C, Gómez-García AC. In vitro studies of activities of some antifungal agents against Candida albicans ATCC 10231 by the turbidimetric method. Antimicrob Agents Chemother. 1992;36(4):898–901.
Article CAS PubMed PubMed Central Google Scholar
Lei J, Xiao W, Zhang J, Liu F, Xin C, Zhou B, Chen W, Song Z. Antifungal activity of vitamin D3 against Candida albicans in vitro and in vivo. Microbiol Res. 2022;265:127200.
Article CAS PubMed Google Scholar
Yadav A, Mandal MK, Dubey KK. In vitro cytotoxicity study of cyclophosphamide, etoposide and paclitaxel on monocyte macrophage cell line raw 264.7. Indian J Microbiol. 2020;60(4):511–7.
Article CAS PubMed PubMed Central Google Scholar
Lippacher A, Müller RH, Mäder K. Liquid and semisolid SLN™ dispersions for topical application: rheological characterization. Eur J Pharm Biopharm. 2004;58(3):561–7.
Comments (0)