Addy NA, Nunes EJ, Hughley SM, Small KM, Baracz SJ, Haight JL, Rajadhyaksha AM (2018) The L-type calcium channel blocker, isradipine, attenuates cueinduced cocaine-seeking by enhancing dopaminergic activity in the ventral tegmental area to nucleus accumbens pathway. Neuropsychopharmacology 43:2361–2372. https://doi.org/10.1038/s41386-018-0080-2
Article CAS PubMed PubMed Central Google Scholar
Adell A, Artigas F (2004) The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev 28:415–431. https://doi.org/10.1016/j.neubiorev.2004.05.001
Article CAS PubMed Google Scholar
Adinoff B (2004) Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry 12:305–320. https://doi.org/10.1080/10673220490910844
Article PubMed PubMed Central Google Scholar
Albanese A, Minciacchi D (1983) Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J Comp Neurol 216:406–420. https://doi.org/10.1002/cne.902160406
Article CAS PubMed Google Scholar
Antoniazzi CTD et al. (2014) Influence of neonatal tactile stimulation on amphetamine preference in young rats: parameters of addiction and oxidative stress. Pharmacol Biochem Behav 24:341–349. https://doi.org/10.1016/j.pbb.2014.07.001
Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25(26):6251–6259. https://doi.org/10.1523/jneurosci.4601-04.2005
Article CAS PubMed PubMed Central Google Scholar
Bisagno V, González B, Urbano FJ (2016) Cognitive enhancers versus addictive psychostimulants: the good and bad side of dopamine on prefrontal cortical circuits. Pharmacol Res 109:108–118. https://doi.org/10.1016/j.phrs.2016.01.013
Article CAS PubMed Google Scholar
Bourque MJ, Trudeau LE (2000) GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur J Neurosci 12:3172–3180. https://doi.org/10.1046/j.1460-9568.2000.00219.x
Article CAS PubMed Google Scholar
Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, Cicchetti F (2009) Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1401–1408. https://doi.org/10.1016/j.pnpbp.2009.07.018
Article CAS PubMed Google Scholar
Büttner, A (2017) The neuropathology of drug abuse. Curr Opin Behav Sci 13:8–12. https://doi.org/10.1016/j.cobeha.2016.07.002
Cass WA, Walker DJ, Manning MW (1999) Augmented methamphetamine-induced overflow of striatal dopamine 1 day after GDNF administration. Brain Res 827:104–112. https://doi.org/10.1016/s0006-8993(99)01314-1
Article CAS PubMed Google Scholar
DaSilva PG, Domingues DD, de Carvalho LA, Allodi S, Correa CL (2016) Neurotrophic factors in Parkinson’s disease are regulated by exercise: evidence-based practice. J Neurol Sci 363:5–15. https://doi.org/10.1016/j.jns.2016.02.017
Di Ciano P, Robbins TW, Everitt BJ (2008) Differential effects of nucleus accumbens core, shell, or dorsal striatal inactivations on the persistence, reacquisition, or reinstatement of responding for a drug-paired conditioned reinforcer. Neuropsychopharmacology 33:1413–1425. https://doi.org/10.1038/sj.npp.1301522
Article CAS PubMed Google Scholar
Dias VT, Rosa HZ, D’avila LF, Vey LT, Barcelos RCS, Burger ME (2019) Modafinil reduces amphetamine preference and prevents anxiety-like symptoms during drug withdrawal in young rats: involvement of dopaminergic targets in VTA and striatum. Prog Neuropsychopharmacol Biol Psychiatry 92:199–206. https://doi.org/10.1016/j.pnpbp.2019.01.007
Article CAS PubMed Google Scholar
Dias VT, Vey LT, Rosa HZ, D’ Avila, L.F.D., Barcelos, R.C.S., Burger, M. E., (2017) Could modafinil prevent the psychostimulant addiction? An experimental study in rats. Basic Clin Pharmacol Toxicol 121:400–408. https://doi.org/10.1111/bcpt.12821
Article CAS PubMed Google Scholar
Dinoff A, Herrmann N, Swardfager W, Lanctot KL (2017) The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 46:1635–1646. https://doi.org/10.1111/ejn.13603
Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489. https://doi.org/10.1038/nn1579
Article CAS PubMed Google Scholar
Galea S, Merchant RM, Lurie N (2020) The mental health consequences of COVID-19 and physical distancing: the need for prevention and early intervention. JAMA Intern Med 180(6):817–818. https://doi.org/10.1001/jamainternmed.2020.1562
Article CAS PubMed Google Scholar
Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L (2010) Role of BDNF and GDNF in drug reward and relapse: a review. Neurosci Biobehav Rev 35:157–71. https://doi.org/10.1016/2Fj.neubiorev.2009.11.009
Gomez-Pinilla F, Hillman Ch (2013) The influence of exercise on cognitive abilities. Comp Physiol 3:403–442. https://doi.org/10.1002/cphy.c110063
Graham DL, Edwards S, Bachtell RK, Dileone RJ, Rios M, Self DW (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10:1029–1037. https://doi.org/10.1038/nn1929
Article CAS PubMed Google Scholar
Harte MK, Cahir M, Reynolds GP, Gartlon JE, Jones DN (2007) Sub-chronic phencyclidine administration increases brain-derived neurotrophic factor in the RAT hippocampus. Schizophr Res 94:371–372. https://doi.org/10.1016/j.schres.2007.04.032
He DY, McGough NN, Ravindranathan A, Jeanblanc J, Logrip ML, Phamluong K, Janak PH, Ron D (2005) Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption. J Neurosci 25:619–628. https://doi.org/10.1523/jneurosci.3959-04.2005
Article CAS PubMed PubMed Central Google Scholar
Hebert MA, Van Horne CG, Hoffer BJ, Gerhardt GA (1996) Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J Pharmacol Exp Ther 279:1181–1190
Heijnen S, Hommel B, Kibele A, Colzato LS (2016) Neuromodulation of aerobic exercise-a review. Front Psychol 6:1890. https://doi.org/10.3389/fpsyg.2015.01890
Article PubMed PubMed Central Google Scholar
Intlekofer KA, Berchtold NC, Malvaez M, Carlos AJ, McQuown SC, Cunningham MJ, Wood MA, Cotman CW (2013) Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology 38(10):2027–2034. https://doi.org/10.1038/npp.2013.104
Article CAS PubMed PubMed Central Google Scholar
Karch SB, Drummer O (2016) Karch's Pathology of Drug Abuse, 5th ed. CRC Press, Taylor & Francis Group, Boca Raton
Kobori N, Waymire JC, Haycock JW, Clifton GL, Dash PK (2004) Enhancement of tyrosine hydroxylase phosphorylation and activity by glial cell line-derived neurotrophic factor. J Biol Chem 279:2182–2191. https://doi.org/10.1074/jbc.M310734200
Article CAS PubMed Google Scholar
Koskela M, Bäck S, Võikar V, Richie CT, Domanskyi A, Harvey BK, Airavaara M (2017) Update of neurotrophic factors in neurobiology of addiction and future directions. Neurobiol Dis 97(Pt B):189–200. https://doi.org/10.1016/j.nbd.2016.05.010
Article CAS PubMed Google Scholar
Krimer LS, Jakab RL, Goldman-Rakic PS (1997) Quantitative three-dimensional analysis of the catecholaminergic innervation of identified neurons in the macaque prefrontal córtex. J Neurosci 17:7450–7461. https://doi.org/10.1523/JNEUROSCI.17-19-07450.1997
Article CAS PubMed PubMed Central Google Scholar
Kuhn FT, Kr R, Antoniazzi CTD, PASE, C., Trevizol F., Barcelos, R.C.S., Dias, V.T., Roversi, K., Boufleur, N., Benvegnú D.M., Piccolo, J., Emanuelli, T., Bürger, M.E., (2013) Influence of trans fat and omega-3 on the preference of psychostimulant drugs in the first generation of young rats. Pharmacol Biochem Behav 110:58–65. https://doi.org/10.1016/j.pbb.2013.06.001
Article CAS PubMed Google Scholar
Kuhn FT, Dias VT, Kr R, Vey LT, Freitas DL, Pase CS, Roversi K, Veit JC, Emanuelli T, Burger ME (2015) Cross-generational trans fat consumption favors self-administration of amphetamine and changes molecular expressions of BDNF, DAT, and D1/D2 receptors in the cortex and hippocampus of rats. Neurotox Res 28(4):319–331. https://doi.org/10.1007/s12640-015-9549-5
Article CAS PubMed Google Scholar
Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71:155–234. https://doi.org/10.1152/physrev.1991.71.1.155
Lett BT, Grant VL, Koh MT, Flynn G (2002) Prior experience with wheel running produces cross-tolerance to the rewarding effect of morphine. Pharmacol Biochem Behav 72:101–105. https://doi.org/10.1016/S0091-3057(01)00722-5
Article CAS PubMed Google Scholar
Lin F, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132. https://doi.org/10.1126/science.8493557
Article CAS PubMed Google Scholar
Lu B (2003) Pro-region of neurotrophins: role in synaptic modulation. Neuron 39:735–738.
Comments (0)