Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13:1387–97. https://doi.org/10.7150/ijbs.21635.
Article CAS PubMed PubMed Central Google Scholar
Jayachandran P, Battaglin F, Strelez C, Lenz A, Algaze S, Soni S, et al. Breast cancer and neurotransmitters: emerging insights on mechanisms and therapeutic directions. n.d. https://doi.org/10.1038/s41388-022-02584-4.
Waks AG, Winer EP, Adrienne G. Waks, MD; Eric P. Winer M. Breast cancer treatment a review. Jama. 2019;321:288–300. https://doi.org/10.1001/jama.2018.19323.
Matsen CB, Neumayer LA. Breast cancer: a review for the general surgeon. JAMA Surg. 2013;148:971–80. https://doi.org/10.1001/JAMASURG.2013.3393.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Article CAS PubMed Google Scholar
Warburg O. On the Origin of Cancer cells. 1956;123:309–14
Board M, Humm S, Newaholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J. 1990;265:503–9. https://doi.org/10.1042/bj2650503.
Article CAS PubMed PubMed Central Google Scholar
DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18:54–61. https://doi.org/10.1016/j.gde.2008.02.003.
Article CAS PubMed PubMed Central Google Scholar
Nguyen T-L, Durán R V. Glutamine metabolism in cancer therapy. Cancer Drug Resist. 2018:126–38. https://doi.org/10.20517/cdr.2018.08.
Anso E, Mullen AR, Felsher DW, Matés JM, DeBerardinis RJ, Chandel NS. Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab. 2013;1:7. https://doi.org/10.1186/2049-3002-1-7.
Article PubMed PubMed Central Google Scholar
Blancato J, Singh B, Liu A, Liao DJ, Dickson RB. Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer. 2004;90:1612–9. https://doi.org/10.1038/sj.bjc.6601703.
Article CAS PubMed PubMed Central Google Scholar
Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. 2011. https://doi.org/10.1038/nature10334.
Claret FX, Arcaro A, Stampfer MR, Blandino G, Hartl M. The quest for targets executing MYC-dependent cell transformation. 2016;6:132. https://doi.org/10.3389/fonc.2016.00132.
Alexandrova R, Podlipnik Č. MYC oncogenes as potential anticancer targets. Oncog Viruses Vol 2 Med Appl Viral Oncol Res. 2023;2:191–219. https://doi.org/10.1016/B978-0-12-824156-1.00011-X.
Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, et al. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. Nat Nanotechnol. 2023;18:193–204. https://doi.org/10.1038/s41565-022-01266-2.
Article CAS PubMed Google Scholar
Guo T, Zhu Y, Yue M, Wang F, Li Z, Lin M. The Therapeutic Effects of DDP/CD44-shRNA Nanoliposomes in AMF on Ovarian Cancer. Front Oncol. 2022;12:1–12. https://doi.org/10.3389/fonc.2022.811783.
Cancer Genome Atlas Network T. Comprehensive molecular portraits of human breast tumours. 2012. https://doi.org/10.1038/nature11412.
Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016 224 2016;22:427–32. https://doi.org/10.1038/nm.4055.
Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901. https://doi.org/10.1158/1535-7163.MCT-13-0870.
Article CAS PubMed Google Scholar
Effenberger M, Bommert KS, Kunz V, Kruk J, Leich E, Rudelius M, et al. Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation. Oncotarget. 2017;8:85858. https://doi.org/10.18632/ONCOTARGET.20691.
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5. https://doi.org/10.1038/nature07823.
Article CAS PubMed PubMed Central Google Scholar
Paul A, Muralidharan A, Biswas A, Kamath BV, Joseph A, Alex AT. siRNA therapeutics and its challenges: recent advances in effective delivery for cancer therapy. OpenNano. 2022;7. https://doi.org/10.1016/J.ONANO.2022.100063.
Elgogary A, Xu Q, Poore B, Alt J, Zimmermann SC, Zhao L, et al. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc Natl Acad Sci USA. 2016;113:E5328–36. https://doi.org/10.1073/pnas.1611406113.
Article CAS PubMed PubMed Central Google Scholar
Bala I, Hariharan S, Kumar MNVR. PLGA Nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carr Syst. 2004;21:387–422. https://doi.org/10.1615/CRITREVTHERDRUGCARRIERSYST.V21.I5.20.
Pandita D, Kumar S, Lather V. Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discov Today. 2015;20:95–104. https://doi.org/10.1016/J.DRUDIS.2014.09.018.
Article CAS PubMed Google Scholar
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–22. https://doi.org/10.1016/J.JCONREL.2012.01.043.
Article CAS PubMed Google Scholar
Zheng X, Zhu Y, Fei W, Zhao Y, Liu Y, Yan J, et al. Redox-responsive and electrically neutral PLGA nanoparticles for siRNA delivery in human cervical carcinoma cells. J Pharm Innov. 2022;17:1392–404. https://doi.org/10.1007/s12247-021-09592-z.
Choi SG, Shin J, Lee KY, Park H, Kim SI, Yi YY, et al. PINK1 siRNA-loaded poly(lactic-co-glycolic acid) nanoparticles provide neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Glia. 2023. https://doi.org/10.1002/glia.24339.
Katt WP, Cerione RA. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov Today. 2014;19:450–7. https://doi.org/10.1016/J.DRUDIS.2013.10.008.
Article CAS PubMed Google Scholar
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in b cells. Cell Metab. 2012;15:110–21. https://doi.org/10.1016/j.cmet.2011.12.009.
Article CAS PubMed PubMed Central Google Scholar
Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology. 2013;11:1–12. https://doi.org/10.1186/1477-3155-11-26/METRICS.
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428–37. https://doi.org/10.1016/J.ADDR.2009.03.009.
Article CAS PubMed PubMed Central Google Scholar
Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121:3–9. https://doi.org/10.1016/J.JCONREL.2007.03.022.
Article CAS PubMed PubMed Central Google Scholar
Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104:2050–5. https://doi.org/10.1073/PNAS.0608582104/SUPPL_FILE/IMAGE97.GIF.
Article CAS PubMed PubMed Central Google Scholar
Chaturvedi S, Garg A. Development and optimization of nanoemulsion containing exemestane using box-behnken design. J Drug Deliv Sci Technol. 2023;80:104151. https://doi.org/10.1016/J.JDDST.2023.104151.
Alonso-González M, Fernández-Carballido A, Quispe-Chauca P, Lozza I, Martín-Sabroso C, Isabel F-Sánchez A. DoE-based development of celecoxib loaded PLGA nanoparticles: In ovo assessment of its antiangiogenic effect. Eur J Pharm Biopharm. 2022;180:149–60. https://doi.org/10.1016/J.EJPB.2022.09.022.
Shafiee M, Abolmaali SS, Abedanzadeh M, Tamaddon AM. Taguchi design optimization of curcumin loading in mesoporous silica nanoparticles with variable particle and pore sizes. Trends Pharm Sci. 2022;8:155–64. https://doi.org/10.30476/TIPS.2022.95646.1150.
Terunuma A, Putluri N, Mishra P, Mathé EA, Dorsey TH, Yi M, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014;124:398–412. https://doi.org/10.1172/JCI71180.
Article CAS PubMed Google Scholar
Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, et al. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc. 2007;2:2068–78. https://doi.org/10.1038/nprot.2007.278.
Article CAS PubMed Google Scholar
Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–30. https://doi.org/10.1038/nbt936.
Article CAS PubMed Google Scholar
Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–48. https://doi.org/10.1093/nar/gkh247.
Comments (0)