Development, Optimization, and Evaluation of Nano-platforms for Delivery of siRNA and BPTES in c-Myc Induced Breast Cancer

Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13:1387–97. https://doi.org/10.7150/ijbs.21635.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jayachandran P, Battaglin F, Strelez C, Lenz A, Algaze S, Soni S, et al. Breast cancer and neurotransmitters: emerging insights on mechanisms and therapeutic directions. n.d. https://doi.org/10.1038/s41388-022-02584-4.

Waks AG, Winer EP, Adrienne G. Waks, MD; Eric P. Winer M. Breast cancer treatment a review. Jama. 2019;321:288–300. https://doi.org/10.1001/jama.2018.19323.

Matsen CB, Neumayer LA. Breast cancer: a review for the general surgeon. JAMA Surg. 2013;148:971–80. https://doi.org/10.1001/JAMASURG.2013.3393.

Article  PubMed  Google Scholar 

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

Article  CAS  PubMed  Google Scholar 

Warburg O. On the Origin of Cancer cells. 1956;123:309–14

Board M, Humm S, Newaholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J. 1990;265:503–9. https://doi.org/10.1042/bj2650503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18:54–61. https://doi.org/10.1016/j.gde.2008.02.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen T-L, Durán R V. Glutamine metabolism in cancer therapy. Cancer Drug Resist. 2018:126–38. https://doi.org/10.20517/cdr.2018.08.

Anso E, Mullen AR, Felsher DW, Matés JM, DeBerardinis RJ, Chandel NS. Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab. 2013;1:7. https://doi.org/10.1186/2049-3002-1-7.

Article  PubMed  PubMed Central  Google Scholar 

Blancato J, Singh B, Liu A, Liao DJ, Dickson RB. Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer. 2004;90:1612–9. https://doi.org/10.1038/sj.bjc.6601703.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. 2011. https://doi.org/10.1038/nature10334.

Claret FX, Arcaro A, Stampfer MR, Blandino G, Hartl M. The quest for targets executing MYC-dependent cell transformation. 2016;6:132. https://doi.org/10.3389/fonc.2016.00132.

Article  Google Scholar 

Alexandrova R, Podlipnik Č. MYC oncogenes as potential anticancer targets. Oncog Viruses Vol 2 Med Appl Viral Oncol Res. 2023;2:191–219. https://doi.org/10.1016/B978-0-12-824156-1.00011-X.

Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, et al. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. Nat Nanotechnol. 2023;18:193–204. https://doi.org/10.1038/s41565-022-01266-2.

Article  CAS  PubMed  Google Scholar 

Guo T, Zhu Y, Yue M, Wang F, Li Z, Lin M. The Therapeutic Effects of DDP/CD44-shRNA Nanoliposomes in AMF on Ovarian Cancer. Front Oncol. 2022;12:1–12. https://doi.org/10.3389/fonc.2022.811783.

Article  CAS  Google Scholar 

Cancer Genome Atlas Network T. Comprehensive molecular portraits of human breast tumours. 2012. https://doi.org/10.1038/nature11412.

Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016 224 2016;22:427–32. https://doi.org/10.1038/nm.4055.

Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901. https://doi.org/10.1158/1535-7163.MCT-13-0870.

Article  CAS  PubMed  Google Scholar 

Effenberger M, Bommert KS, Kunz V, Kruk J, Leich E, Rudelius M, et al. Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation. Oncotarget. 2017;8:85858. https://doi.org/10.18632/ONCOTARGET.20691.

Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5. https://doi.org/10.1038/nature07823.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paul A, Muralidharan A, Biswas A, Kamath BV, Joseph A, Alex AT. siRNA therapeutics and its challenges: recent advances in effective delivery for cancer therapy. OpenNano. 2022;7. https://doi.org/10.1016/J.ONANO.2022.100063.

Elgogary A, Xu Q, Poore B, Alt J, Zimmermann SC, Zhao L, et al. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc Natl Acad Sci USA. 2016;113:E5328–36. https://doi.org/10.1073/pnas.1611406113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bala I, Hariharan S, Kumar MNVR. PLGA Nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carr Syst. 2004;21:387–422. https://doi.org/10.1615/CRITREVTHERDRUGCARRIERSYST.V21.I5.20.

Article  CAS  Google Scholar 

Pandita D, Kumar S, Lather V. Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discov Today. 2015;20:95–104. https://doi.org/10.1016/J.DRUDIS.2014.09.018.

Article  CAS  PubMed  Google Scholar 

Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–22. https://doi.org/10.1016/J.JCONREL.2012.01.043.

Article  CAS  PubMed  Google Scholar 

Zheng X, Zhu Y, Fei W, Zhao Y, Liu Y, Yan J, et al. Redox-responsive and electrically neutral PLGA nanoparticles for siRNA delivery in human cervical carcinoma cells. J Pharm Innov. 2022;17:1392–404. https://doi.org/10.1007/s12247-021-09592-z.

Article  Google Scholar 

Choi SG, Shin J, Lee KY, Park H, Kim SI, Yi YY, et al. PINK1 siRNA-loaded poly(lactic-co-glycolic acid) nanoparticles provide neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Glia. 2023. https://doi.org/10.1002/glia.24339.

Article  PubMed  Google Scholar 

Katt WP, Cerione RA. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov Today. 2014;19:450–7. https://doi.org/10.1016/J.DRUDIS.2013.10.008.

Article  CAS  PubMed  Google Scholar 

Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in b cells. Cell Metab. 2012;15:110–21. https://doi.org/10.1016/j.cmet.2011.12.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology. 2013;11:1–12. https://doi.org/10.1186/1477-3155-11-26/METRICS.

Article  Google Scholar 

Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428–37. https://doi.org/10.1016/J.ADDR.2009.03.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121:3–9. https://doi.org/10.1016/J.JCONREL.2007.03.022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104:2050–5. https://doi.org/10.1073/PNAS.0608582104/SUPPL_FILE/IMAGE97.GIF.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaturvedi S, Garg A. Development and optimization of nanoemulsion containing exemestane using box-behnken design. J Drug Deliv Sci Technol. 2023;80:104151. https://doi.org/10.1016/J.JDDST.2023.104151.

Article  CAS  Google Scholar 

Alonso-González M, Fernández-Carballido A, Quispe-Chauca P, Lozza I, Martín-Sabroso C, Isabel F-Sánchez A. DoE-based development of celecoxib loaded PLGA nanoparticles: In ovo assessment of its antiangiogenic effect. Eur J Pharm Biopharm. 2022;180:149–60. https://doi.org/10.1016/J.EJPB.2022.09.022.

Article  PubMed  Google Scholar 

Shafiee M, Abolmaali SS, Abedanzadeh M, Tamaddon AM. Taguchi design optimization of curcumin loading in mesoporous silica nanoparticles with variable particle and pore sizes. Trends Pharm Sci. 2022;8:155–64. https://doi.org/10.30476/TIPS.2022.95646.1150.

Terunuma A, Putluri N, Mishra P, Mathé EA, Dorsey TH, Yi M, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014;124:398–412. https://doi.org/10.1172/JCI71180.

Article  CAS  PubMed  Google Scholar 

Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, et al. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc. 2007;2:2068–78. https://doi.org/10.1038/nprot.2007.278.

Article  CAS  PubMed  Google Scholar 

Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–30. https://doi.org/10.1038/nbt936.

Article  CAS  PubMed  Google Scholar 

Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–48. https://doi.org/10.1093/nar/gkh247.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif