Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA oncology. 2022;8(3):420–44.
Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chinese medical journal. 2022;135(5):584–90.
Article PubMed PubMed Central Google Scholar
Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. Ann Glob Health. 2019;85(1):8.
Article PubMed PubMed Central Google Scholar
Lorenzo Bermejo J, Hemminki K. Familial lung cancer and aggregation of smoking habits: a simulation of the effect of shared environmental factors on the familial risk of cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(7):1738–40.
Couraud S, Zalcman G, Milleron B, Morin F, Souquet PJ. Lung cancer in never smokers–a review. Eur J Cancer (Oxford, England : 1990). 2012;48(9):1299–311.
Thun MJ, Hannan LM, Adams-Campbell LL, Boffetta P, Buring JE, Feskanich D, et al. Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med. 2008;5(9):e185.
Article PubMed PubMed Central Google Scholar
Chen TY, Fang YH, Chen HL, Chang CH, Huang H, Chen YS, et al. Impact of cooking oil fume exposure and fume extractor use on lung cancer risk in non-smoking Han Chinese women. Sci Rep. 2020;10(1):6774.
Article CAS PubMed PubMed Central Google Scholar
Dou C, Zhang J, Qi C. Cooking oil fume-derived PM(2.5) induces apoptosis in A549 cells and MAPK/NF-кB/STAT1 pathway activation. Environ Sci Pollut Res Int. 2018;25(10):9940–8r.
Article CAS PubMed Google Scholar
Brody H. Lung cancer. Nature. 2014;513(7517):S1.
Article CAS PubMed Google Scholar
Pan JL, Gao J, Hou JH, Hu DZ, Li L. Interaction Between Environmental Risk Factors and Catechol-O-Methyltransferase (COMT) and X-Ray Repair Cross-Complementing Protein 1 (XRCC1) Gene Polymorphisms in Risk of Lung Cancer Among Non-Smoking Chinese Women: A Case-Control Study. Med Sci Monit. 2018;24:5689–97.
Article CAS PubMed PubMed Central Google Scholar
Taylor JG, Choi EH, Foster CB, Chanock SJ. Using genetic variation to study human disease. Trends Mol Med. 2001;7(11):507–12.
Article CAS PubMed Google Scholar
Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 1998;8(12):1229–31.
Article CAS PubMed Google Scholar
Weissfeld JL, Lin Y, Lin HM, Kurland BF, Wilson DO, Fuhrman CR, et al. Lung cancer risk prediction using common SNPs located in GWAS-identified susceptibility regions. J Thorac Oncol. 2015;10(11):1538–45.
Article CAS PubMed PubMed Central Google Scholar
Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, et al. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene. 2012;501(2):89–103.
Article CAS PubMed Google Scholar
Seibold MA, Wise AL, Speer MC, Steele MP, Brown KK, Loyd JE, et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. 2011;364(16):1503–12.
Article CAS PubMed PubMed Central Google Scholar
Kim DH, Park SE, Kim M, Ji YI, Kang MY, Jung EH, et al. A functional single nucleotide polymorphism at the promoter region of cyclin A2 is associated with increased risk of colon, liver, and lung cancers. Cancer. 2011;117(17):4080–91.
Article CAS PubMed Google Scholar
Liu H, Liu Z, Wang Y, Stinchcombe TE, Owzar K, Han Y, et al. Functional variants in DCAF4 associated with lung cancer risk in European populations. Carcinogenesis. 2017;38(5):541–51.
Article CAS PubMed PubMed Central Google Scholar
Jarrar YB, Lee SJ. Molecular functionality of cytochrome P450 4 (CYP4) genetic polymorphisms and their clinical implications. Int J Mol Sci. 2019;20(17):4274.
Article CAS PubMed PubMed Central Google Scholar
Gonzalez FJ, Nebert DW. Evolution of the P450 gene superfamily: animal-plant “warfare”, molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990;6(6):182–6.
Article CAS PubMed Google Scholar
Edson KZ, Rettie AE. CYP4 enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities. Curr Top Med Chem. 2013;13(12):1429–40.
Article CAS PubMed PubMed Central Google Scholar
Drolet B, Pilote S, Gélinas C, Kamaliza AD, Blais-Boilard A, Virgili J, et al. Altered protein expression of cardiac CYP2J and hepatic CYP2C, CYP4A, and CYP4F in a mouse model of type II diabetes-A link in the onset and development of cardiovascular disease? Pharmaceutics. 2017;9(4):44.
Article PubMed PubMed Central Google Scholar
Işcan M, Ada AO. Cytochrome P-450 polymorphisms and clinical outcome in patients with non-small cell lung cancer. Turk J Pharm Sci. 2017;14(3):319–23.
Article PubMed PubMed Central Google Scholar
Liu X, Jia Y, Shi C, Kong D, Wu Y, Zhang T, et al. CYP4B1 is a prognostic biomarker and potential therapeutic target in lung adenocarcinoma. PLoS One. 2021;16(2):e0247020.
Article CAS PubMed PubMed Central Google Scholar
Kagawa Y, Umaru BA, Ariful I, Shil SK, Miyazaki H, Yamamoto Y, et al. Role of FABP7 in tumor cell signaling. Adv Biol Regul. 2019;71:206–18.
Article CAS PubMed Google Scholar
Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22.
Article CAS PubMed Google Scholar
Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, et al. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med. 2018;10(3):e8313.
Article PubMed PubMed Central Google Scholar
Deeken JF, Cormier T, Price DK, Sissung TM, Steinberg SM, Tran K, et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J. 2010;10(3):191–9.
Article CAS PubMed Google Scholar
Sasaki T, Horikawa M, Orikasa K, Sato M, Arai Y, Mitachi Y, et al. Possible relationship between the risk of Japanese bladder cancer cases and the CYP4B1 genotype. Jpn J Clin Oncol. 2008;38(9):634–40.
Ellis JA, Ong B. The MassARRAY(®) system for targeted SNP genotyping. Methods Mol Biol. 2017;1492:77–94.
Article CAS PubMed Google Scholar
Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.
Article CAS PubMed PubMed Central Google Scholar
Liang L, Cen H, Huang J, Qin A, Xu W, Wang S, et al. The reversion of DNA methylation-induced miRNA silence via biomimetic nanoparticles-mediated gene delivery for efficient lung adenocarcinoma therapy. Mol Cancer. 2022;21(1):186.
Article CAS PubMed PubMed Central Google Scholar
Carithers LJ, Moore HM. The genotype-tissue expression (GTEx) project. Biopreserv Biobank. 2015;13(5):307–8.
Article PubMed PubMed Central Google Scholar
Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434–42.
Article PubMed PubMed Central Google Scholar
Guarga L, Ameijide A, Marcos-Gragera R, Carulla M, Delgadillo J, Borràs JM, et al. Trends in lung cancer incidence by age, sex and histology from 2012 to 2025 in Catalonia (Spain). Sci Rep. 2021;11(1):23274.
Article CAS PubMed PubMed Central Google Scholar
Siddiqui F, Vaqar S, Siddiqui AH. Lung Cancer. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022. Copyright © 2022, StatPearls Publishing LLC.
Tolwin Y, Gillis R, Peled N. Gender and lung cancer-SEER-based analysis. Ann Epidemiol. 2020;46:14–9.
Comments (0)