Management of experimental trabeculectomy filtering blebs via crosslinking of the scleral flap inhibited vascularization

Yin X, Cai Q, Song R, He X, Lu P (2018) Relationship between filtering bleb vascularization and surgical outcomes after trabeculectomy: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 256(12):2399–2405

Article  PubMed  Google Scholar 

Mastropasqua R, Brescia L, Di Antonio L et al (2020) Angiographic biomarkers of filtering bleb function after XEN gel implantation for glaucoma: an optical coherence tomography-angiography study. Acta Ophthalmol 98(6):e761–e767

Article  PubMed  Google Scholar 

Grewal DS, Jain R, Kumar H, Grewal SPS (2008) Evaluation of subconjunctival bevacizumab as an adjunct to trabeculectomy: a pilot study. Ophthalmology 115:2141–2145

Article  PubMed  Google Scholar 

Jonas JB, Spandau UH, Schlichtenbrede F (2007) Intravitreal bevacizumab for filtering surgery. Ophthalmic Res 39:121–122

Article  CAS  PubMed  Google Scholar 

Xiong Q, Li Z, Li Z et al (2014) nti-VEGF agents with or without antimetabolites in trabeculectomy for glaucoma: a meta-analysis. PLoS One 9(2):e88403

Article  PubMed  PubMed Central  Google Scholar 

Sorkin N, Varssano D (2014) Corneal collagen crosslinking: a systematic review. Ophthalmologica 232(1):10–27

Article  CAS  PubMed  Google Scholar 

Hou Y, Le VNH, Tóth G et al (2018) UV light crosslinking regresses mature corneal blood and lymphatic vessels and promotes subsequent high-risk corneal transplant survival. Am J Transplant 18(12):2873–2884

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohlhaas M, Spoerl E, Speck A et al (2005) A new treatment of keratectasia after LASIK by using collagen with riboflavin/UVA lightcross-linking. Klin Monbl Augenheilkd 222(5):430–436

Article  CAS  PubMed  Google Scholar 

Brummer G, Littlechild S, McCall S, Zhang Y, Conrad GW (2011) The role of nonenzymatic glycation and carbonyls in collagen cross-linking for the treatment of keratoconus. Invest Ophthalmol Vis Sci 52(9):6363–6369

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christiansen DL, Huang EK, Silver FH (2000) Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol 19(5):409–420

Article  CAS  PubMed  Google Scholar 

Wollensak G, Spoerl E (2004) Collagen crosslinking of human and porcine sclera. J Cataract Refract Surg 30(3):689–695

Article  PubMed  Google Scholar 

Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huynh J, Nishimura N, Rana K et al (2011) Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med 3(112):112ra122

Article  PubMed  PubMed Central  Google Scholar 

Baenninger PB, Bachmann LM, Wienecke L, Thiel MA, Kaufmann C (2017) Pediatric corneal cross-linking: comparison of visual and topographic outcomes between conventional and accelerated treatment. Am J Ophthalmol 183:11–16

Article  PubMed  Google Scholar 

Zhang T, Wang XF, Wang ZC et al (2020) Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother 129:110287

Article  CAS  PubMed  Google Scholar 

Yokota T, McCourt J, Ma F et al (2020) Type V collagen in scar tissue regulates the size of scar after heart injury. Cell 182(3):545-562.e23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen TY, Hu WN, Cai WT et al (2020) Effectiveness and safety of trabeculectomy along with amniotic membrane transplantation on glaucoma: a systematic review. J Ophthalmol 2020:3949735

Article  PubMed  PubMed Central  Google Scholar 

McKay TB, Priyadarsini S, Karamichos D (2019) Mechanisms of collagen crosslinking in diabetes and keratoconus. Cells 8(10):1239

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nasser M, Wu Y, Danaoui Y, Ghosh G (2019) Engineering microenvironments towards harnessing pro-angiogenic potential of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 102:75–84

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song S, Kim M, Shin JH (2009) Upstream mechanotaxis behavior of endothelial cells. Annu Int Conf IEEE Eng Med Biol So 2009:2106–2110

Google Scholar 

Lin D, Alberton P, Delgado Caceres M et al (2020) Loss of tenomodulin expression is a risk factor for age-related intervertebral disc degeneration. Aging Cel 19(3):e13091

Article  CAS  Google Scholar 

Goswami R, Cohen J, Sharma S et al (2017) TRPV4 ION channel is associated with scleroderma. J Invest Dermato 137(4):962–965

Article  CAS  Google Scholar 

Rosenbaum T, Benítez-Angeles M, Sánchez-Hernández R et al (2020) TRPV4: a physio and pathophysiologically significant ion channel. Int J Mol Sci 21(11):3837

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu X, Dong K, Sun R (2021) STIM1 regulates endothelial calcium overload and cytokine upregulation during sepsis. J Surg Re 263:236–244

Article  CAS  Google Scholar 

Qiu X, Liang X, Li H, Sun R (2021) LPS-induced vein endothelial cell injury and acute lung injury have Btk and Orai 1 to regulate SOC-mediated calcium influx. Int Immunopharmaco 90:107039

Article  CAS  Google Scholar 

O’Leary C, McGahon MK, Ashraf S et al (2019) Involvement of TRPV1 and TRPV4 channels in retinal angiogenesis. Invest Ophthalmol Vis Sci 60(10):3297–3309

Article  CAS  PubMed  Google Scholar 

Kanugula AK, Adapala RK, Midha P et al (2019) Novel noncanonical regulation of soluble VEGF/VEGFR2 signaling by mechanosensitive ion channel TRPV4. FASEB J 33(1):195–203

Article  CAS  PubMed  Google Scholar 

Kanugula AK, Adapala RK, Midha P et al (2019) Novel noncanonical regulation of soluble VEGF/VEGFR2 signaling by mechanosensitive ion channel TRPV4. FASEB J 33(1):195–203

Article  CAS  PubMed  Google Scholar 

Kanugula AK, Adapala RK, Jamaiyar A et al (2021) Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity. Angiogenesis 24(3):647–656

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guarino B, Katari V, Adapala R et al (2021) Tumor-derived extracellular vesicles induce abnormal angiogenesis via TRPV4 downregulation and subsequent activation of YAP and VEGFR2. Front Bioeng Biotechnol 9:790489

Article  PubMed  PubMed Central  Google Scholar 

Coudrillier B, Campbell IC, Read AT, Geraldes DM, Vo NT, Feola A, Mulvihill J, Albon J, Abel RL, Ethier CR (2016) Effects of peripapillary scleral stiffening on the deformation of the lamina cribrosa. Invest Ophthalmol Vis Sci 57:2666–2677

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimball EC, Nguyen C, Steinhart MR et al (2014) Experimental scleral cross-linking increases glaucoma damage in a mouse model. Exp Eye Res 128:129–140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wollensak G, Spoerl E (2004) Collagen crosslinking of human and porcine sclera. J Cataract Refract Surg 30(3):689–695

Article  PubMed  Google Scholar 

Guo P, Miao Y, Jing Y et al (2020) Changes in collagen structure and permeability of rat and human sclera after crosslinking. Transl Vis Sci Technol 9(9):45

Article  PubMed  PubMed Central  Google Scholar 

Hatami-Marbini H, Jayaram SM (2018) UVA/riboflavin collagen crosslinking stiffening effects on anterior and posterior corneal flaps. Exp Eye Res 176:53–58

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif