Qualitative MR features to identify non-enhancing tumors within glioblastoma’s T2-FLAIR hyperintense lesions

Sanai N, Polley MY, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas: clinical article. J Neurosurg 115:3–8. https://doi.org/10.3171/2011.2.jns10998

Article  PubMed  Google Scholar 

Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124:977–988. https://doi.org/10.3171/2015.5.jns142087

Article  PubMed  Google Scholar 

Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. https://doi.org/10.3171/jns.2001.95.2.0190

Article  CAS  PubMed  Google Scholar 

Kinoshita M, Arita H, Okita Y et al (2016) Comparison of diffusion tensor imaging and 11 C-methionine positron emission tomography for reliable prediction of tumor cell density in gliomas. J Neurosurg 125:1136–1142. https://doi.org/10.3171/2015.11.jns151848

Article  PubMed  Google Scholar 

Molinaro AM, Hervey-Jumper S, Morshed RA et al (2020) Association of maximal extent of resection of contrast-enhanced and non–contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. Jama Oncol 6:495–503. https://doi.org/10.1001/jamaoncol.2019.6143

Article  PubMed  PubMed Central  Google Scholar 

Sengupta A, Agarwal S, Gupta PK et al (2018) On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images. Eur J Radiol 106:199–208. https://doi.org/10.1016/j.ejrad.2018.07.018

Article  PubMed  Google Scholar 

Takahashi S, Takahashi M, Kinoshita M et al (2021) Fine-tuning approach for segmentation of gliomas in brain magnetic resonance images with a machine learning method to normalize image differences among facilities. Cancers 13:1415. https://doi.org/10.3390/cancers13061415

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pope WB, Sayre J, Perlina A et al (2005) MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26:2466–2474

PubMed  PubMed Central  Google Scholar 

Lasocki A, Gaillard F, Tacey M et al (2015) Incidence and prognostic significance of non-enhancing cortical signal abnormality in glioblastoma. J Méd Imaging Radiat Oncol 60:66–73. https://doi.org/10.1111/1754-9485.12421

Article  PubMed  Google Scholar 

Lasocki A, Gaillard F (2019) Non-contrast-enhancing tumor: a new frontier in glioblastoma research. Am J Neuroradiol 40:758–765. https://doi.org/10.3174/ajnr.a6025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kracht LW, Miletic H, Busch S et al (2004) Delineation of brain tumor extent with [11C]l-methionine positron emission tomography. Clin Cancer Res 10:7163–7170. https://doi.org/10.1158/1078-0432.ccr-04-0262

Article  CAS  PubMed  Google Scholar 

Okita Y, Kinoshita M, Goto T et al (2010) 11C-methionine uptake correlates with tumor cell density rather than with microvessel density in glioma: a stereotactic image-histology comparison. Neuroimage 49:2977–2982. https://doi.org/10.1016/j.neuroimage.2009.11.024

Article  PubMed  Google Scholar 

Kinoshita M, Arita H, Goto T et al (2012) A novel PET index, 18F-FDG–11C-methionine uptake decoupling score, reflects glioma cell infiltration. J Nucl Med 53:1701–1708. https://doi.org/10.2967/jnumed.112.104992

Article  PubMed  Google Scholar 

Verburg N, Hoefnagels FWA, Barkhof F et al (2017) Diagnostic accuracy of neuroimaging to delineate diffuse gliomas within the brain: a meta-analysis. Am J Neuroradiol 38:1884–1891. https://doi.org/10.3174/ajnr.a5368

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arita H, Kinoshita M, Kagawa N et al (2011) 11C-methionine uptake and intraoperative 5‐aminolevulinic acid‐induced fluorescence as separate index markers of cell density in glioma. Cancer 118:1619–1627. https://doi.org/10.1002/cncr.26445

Article  CAS  PubMed  Google Scholar 

Galldiks N, Ullrich R, Schroeter M et al (2010) Volumetry of [11C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol I 37:84–92. https://doi.org/10.1007/s00259-009-1219-5

Article  Google Scholar 

Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of l -[methyl-11C] methionine—positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507. https://doi.org/10.3171/jns.2005.103.3.0498

Article  PubMed  Google Scholar 

Hatakeyama T, Kawai N, Nishiyama Y et al (2008) 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol I 35:2009–2017. https://doi.org/10.1007/s00259-008-0847-5

Article  CAS  Google Scholar 

Čížek J, Herholz K, Vollmar S et al (2004) Fast and robust registration of PET and MR images of human brain. Neuroimage 22:434–442. https://doi.org/10.1016/j.neuroimage.2004.01.016

Article  PubMed  Google Scholar 

D’Alessio A, Proietti G, Sica G, Scicchitano BM (2019) Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers 11:469. https://doi.org/10.3390/cancers11040469

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Leeuw CN, Vogelbaum MA (2018) Supratotal resection in glioma: a systematic review. Neuro-Oncol 21:179–188. https://doi.org/10.1093/neuonc/noy166

Article  PubMed Central  Google Scholar 

Verburg N, Koopman T, Yaqub MM et al (2019) Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neurooncology 22:412–422. https://doi.org/10.1093/neuonc/noz180

Article  CAS  Google Scholar 

Yan JL, Li C, van der Hoorn A et al (2020) A neural network approach to identify the peritumoral invasive areas in glioblastoma patients by using MR radiomics. Sci Rep 10:9748. https://doi.org/10.1038/s41598-020-66691-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang PD, Malone HR, Bowden SG et al (2017) A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. Am J Neuroradiol 38:890–898. https://doi.org/10.3174/ajnr.a5112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lasocki A, Gaillard F, Tacey M et al (2018) Morphologic patterns of noncontrast-enhancing tumor in glioblastoma correlate with IDH1 mutation status and patient survival. J Clin Neurosci 47:168–173. https://doi.org/10.1016/j.jocn.2017.09.007

Article  PubMed  Google Scholar 

Muccio CF, Tarantino A, Esposito G, Cerase A (2011) Differential diagnosis by unenhanced FLAIR T2-weighted magnetic resonance images between solitary high grade gliomas and cerebral metastases appearing as contrast-enhancing cortico-subcortical lesions. J Neuro-Oncol 103:713–717. https://doi.org/10.1007/s11060-010-0454-8

Article  Google Scholar 

Kinoshita M, Uchikoshi M, Tateishi S et al (2021) Magnetic resonance relaxometry for tumor cell density imaging for glioma: an exploratory study via 11C-methionine PET and its validation via stereotactic tissue sampling. Cancers 13:4067. https://doi.org/10.3390/cancers13164067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto S, Sanada T, Sakai M et al (2022) Prediction and visualization of non-enhancing tumor in glioblastoma via T1w/T2w-ratio map. Brain Sci 12:99. https://doi.org/10.3390/brainsci12010099

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirata T, Kinoshita M, Tamari K et al (2018) 11C-methionine-18F-FDG dual-PET-tracer–based target delineation of malignant glioma: evaluation of its geometrical and clinical features for planning radiation therapy. J Neurosurg 131:676–686. https://doi.org/10.3171/2018.4.jns1859

Article  CAS  Google Scholar 

Comments (0)

No login
gif