Song HY, Shen R, Mahasin H, Guo YN, Wang DG. DNA replication: mechanisms and therapeutic interventions for diseases. MedComm. 2023;4:e210.
Article CAS PubMed PubMed Central Google Scholar
Kondratick CM, Washington MT, Spies M. Making choices: DNA replication fork recovery mechanisms. Semin Cell Dev Biol. 2021;113:27–37.
Article CAS PubMed Google Scholar
Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res. 2014;329:85–93.
Article CAS PubMed Google Scholar
Bhat KP, Cortez D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol. 2018;25:446–53.
Article CAS PubMed PubMed Central Google Scholar
Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16:2–9.
Article CAS PubMed PubMed Central Google Scholar
Rickman K, Smogorzewska A. Advances in understanding DNA processing and protection at stalled replication forks. J Cell Biol. 2019;218:1096–107.
Article CAS PubMed PubMed Central Google Scholar
Follonier C, Oehler J, Herrador R, Lopes M. Friedreich’s ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat Struct Mol Biol. 2013;20:486–94.
Article CAS PubMed Google Scholar
Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R, et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol. 2012;19:417–23.
Article CAS PubMed Google Scholar
Lopper M, Boonsombat R, Sandler SJ, Keck JL. A hand-off mechanism for primosome assembly in replication restart. Mol Cell. 2007;26:781–93.
Article CAS PubMed PubMed Central Google Scholar
Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011;145:529–42.
Article CAS PubMed PubMed Central Google Scholar
Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 2012;22:106–16.
Article CAS PubMed PubMed Central Google Scholar
Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016;535:382–7.
Higgs MR, Reynolds JJ, Winczura A, Blackford AN, Borel V, Miller ES, et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol Cell. 2015;59:462–77.
Article CAS PubMed Google Scholar
Chen L, Chen JY, Huang YJ, Gu Y, Qiu J, Qian H, et al. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol Cell. 2018;69:412–25.e416.
Article CAS PubMed PubMed Central Google Scholar
Cortez D. Preventing replication fork collapse to maintain genome integrity. DNA Repair. 2015;32:149–57.
Article CAS PubMed PubMed Central Google Scholar
Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage Responses. Cell. 2017;170:774–86.e719.
Article CAS PubMed PubMed Central Google Scholar
Lemacon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S, et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun. 2017;8:860.
Article PubMed PubMed Central Google Scholar
Shiu J-L, Wu C-K, Chang S-B, Sun Y-J, Chen Y-J, Lai C-C, et al. The HLTF–PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis. 2020;9:104.
Article CAS PubMed PubMed Central Google Scholar
Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18:610–21.
Article CAS PubMed PubMed Central Google Scholar
Berti M, Ray Chaudhuri A, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol. 2013;20:347–54.
Article CAS PubMed PubMed Central Google Scholar
Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW. The importance of poly(ADP-Ribose) polymerase as a sensor of unligated okazaki fragments during DNA replication. Mol Cell. 2018;71:319–31.e313.
Article CAS PubMed PubMed Central Google Scholar
Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559:279–84.
Article CAS PubMed Google Scholar
Genois M-M, Gagné J-P, Yasuhara T, Jackson J, Saxena S, Langelier M-F, et al. CARM1 regulates replication fork speed and stress response by stimulating PARP1. Mol Cell. 2021;81:784–800.e788.
Article CAS PubMed PubMed Central Google Scholar
Shen JZ, Qiu Z, Wu Q, Finlay D, Garcia G, Sun D, et al. FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell. 2021;184:352–69.e323.
Article CAS PubMed Google Scholar
Theulot B, Lacroix L, Arbona JM, Millot GA, Jean E, Cruaud C, et al. Genome-wide mapping of individual replication fork velocities using nanopore sequencing. Nat Commun. 2022;13:3295.
Article CAS PubMed PubMed Central Google Scholar
Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer. 2021;7:863–77.
Article CAS PubMed Google Scholar
Xu X, Ni K, He Y, Ren J, Sun C, Liu Y, et al. The epigenetic regulator LSH maintains fork protection and genomic stability via MacroH2A deposition and RAD51 filament formation. Nat Commun. 2021;12:3520.
Article CAS PubMed PubMed Central Google Scholar
Wade PA. Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene. 2001;20:3166–73.
Article CAS PubMed Google Scholar
Clouaire T, Stancheva I. Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci. 2008;65:1509–22.
Article CAS PubMed PubMed Central Google Scholar
Li L, Chen BF, Chan WY. An epigenetic regulator: methyl-CpG-binding domain protein 1 (MBD1). Int J Mol Sci. 2015;16:5125–40.
Article CAS PubMed PubMed Central Google Scholar
Fujita N, Watanabe S, Ichimura T, Ohkuma Y, Chiba T, Saya H et al. MCAF mediates MBD1-dependent transcriptional repression. Mol Cell Biol. 2003;23:2834–43.
Article CAS PubMed PubMed Central Google Scholar
Xu J, Zhu W, Xu W, Cui X, Chen L, Ji S, et al. Silencing of MBD1 reverses pancreatic cancer therapy resistance through inhibition of DNA damage repair. Int J Oncol. 2013;42:2046–52.
Article CAS PubMed Google Scholar
Olivieri M, Cho T, Alvarez-Quilon A, Li K, Schellenberg MJ, Zimmermann M, et al. A genetic map of the response to DNA damage in human cells. Cell. 2020;182:481–96.e421.
Article CAS PubMed PubMed Central Google Scholar
Clouaire T, de Las Heras JI, Merusi C, Stancheva I. Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res. 2010;38:4620–34.
Comments (0)