Kadriu B, Greenwald M, Henter ID, Gilbert JR, Kraus C, Park LT, Zarate CA (2021) Ketamine and serotonergic psychedelics. Common mechanisms underlying the effects of rapid-acting antidepressants. Int J Neuropsychopharmacol 24(1):8–21. https://doi.org/10.1093/ijnp/pyaa087
Article CAS PubMed Google Scholar
de Gregorio D, Aguilar-Valles A, Preller KH, Heifets BD, Hibicke M, Mitchell J, Gobbi G (2021) Hallucinogens in mental health: preclinical and clinical studies on LSD, psilocybin, MDMA, and ketamine. J Neuroscience 41(5):891–900. https://doi.org/10.1523/JNEUROSCI.1659-20.2020
Choudhury D, Autry AE, Tolias KF, Krishnan V (2021) Ketamine: neuroprotective or neurotoxic? Front Neurosci 15:672526. https://doi.org/10.3389/fnins.2021.672526
Article PubMed PubMed Central Google Scholar
Carboni E, Carta A, Carboni E, Novelli A (2021) Repurposing ketamine in depression and related disorders: can this enigmatic drug achieve success? Front Neurosci 15:657714. https://doi.org/10.3389/fnins.2021.657714
Article PubMed PubMed Central Google Scholar
Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17(8):2921–2927
Article CAS PubMed PubMed Central Google Scholar
Wojtas A, Bysiek A, Wawrzczak-Bargiela A, Szych Z, Majcher-Maślanka I, Herian M, Maćkowiak M, Gołembiowska K (2022) Effect of psilocybin and ketamine on brain neurotransmitters, glutamate receptors, DNA and rat behavior. Int J Mol Sci 23(12):6713. https://doi.org/10.3390/ijms23126713
Article CAS PubMed PubMed Central Google Scholar
Tian Z, Dong C, Fujita A, Fujita Y, Hashimoto K (2018) Expression of heat shock protein HSP-70 in the retrosplenial cortex of rat brain after administration of (R, S)-ketamine and (S)-ketamine, but not (R)-ketamine. Pharmacol Biochem Behav 172:17–21. https://doi.org/10.1016/j.pbb.2018.07.003
Article CAS PubMed Google Scholar
Morris PJ, Burke RD, Sharma AK, Lynch DC, Lemke-Boutcher LE, Mathew S, Elayan I, Rao DB, Gould TD, Zarate CA, Zanos P, Moaddel R, Thomas CJ (2021) A comparison of the pharmacokinetics and NMDAR antagonism-associated neurotoxicity of ketamine, (2R,6R)-hydroxynorketamine and MK-801. Neurotoxicol Teratol 87:106993. https://doi.org/10.1016/j.ntt.2021.106993
Article CAS PubMed PubMed Central Google Scholar
Olney JW, Labruyere J, Price M (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244:1360–1362
Article CAS PubMed Google Scholar
Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD (2020) Psychedelics, but Not ketamine, produce persistent antidepressant-like effects in a rodent experimental system for the study of depression. ACS Chem Neurosci 11(6):864–871. https://doi.org/10.1021/acschemneuro.9b00493
Article CAS PubMed Google Scholar
Carhart-Harris RL, Bolstridge M, Rucker J, Day CMJ, Erritzoe D, Kaelen M, Bloomfield M, Rickard JA, Forbes B, Feilding A, Taylor D, Pilling S, Curran VH, Nutt DJ (2016) Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry 3(7):619–627. https://doi.org/10.1016/S2215-0366(16)30065-7
Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, Antenucci L, Kot EF, Goncharuk SA, Kaurinkoski K, Kuutti M, Fred SM, Elsilä LV, Sakson S, Cannarozzo C, Diniz CRAF, Seiffert N, Rubiolo A, Haapaniemi H, Meshi E, Nagaeva E, Öhman T, Róg T, Kankuri E, Vilar M, Varjosalo M, Korpi ER, Permi P, Mineev KS, Saarma M, Vattulainen I, Casarotto PC, Castrén E (2023) Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci 26(6):1032–1041. https://doi.org/10.1038/s41593-023-01316-5
Article CAS PubMed PubMed Central Google Scholar
Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, Rog T, Piepponen TP, Bramham CR, Normann C, Lauri SE, Saarma M, Vattulainen I, Castrén E (2021) Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184(5):1299-1313.e19. https://doi.org/10.1016/j.cell.2021.01.034
Article CAS PubMed PubMed Central Google Scholar
Mason NL, Kuypers KPC, Müller F, Reckweg J, Tse DHY, Toennes SW, Hutten NRPW, Jansen JFA, Stiers P, Feilding A, Ramaekers JG (2020) Me, myself, bye: regional alterations in glutamate and the experience of ego dissolution with psilocybin. Neuropsychopharmacology 45(12):2003–2011. https://doi.org/10.1038/s41386-020-0718-8
Article CAS PubMed PubMed Central Google Scholar
Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM (2021) Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2022489118
Article PubMed PubMed Central Google Scholar
Li Q, Clark S, Lewis D, Wilson W (2002) NMDA receptor antagonists disinhibit rat posterior cingulate and retrosplenial cortices: a potential mechanism of neurotoxicity. J Neurosci 22(8):3070–3080
Article CAS PubMed PubMed Central Google Scholar
Müller F, Kraus E, Holze F, Becker A, Ley L, Schmid Y, Vizeli P, Liechti ME, Borgwardt S (2022) Flashback phenomena after administration of LSD and psilocybin in controlled studies with healthy participants. Psychopharmacology 239(6):1933–1943. https://doi.org/10.1007/s00213-022-06066-z
Article CAS PubMed PubMed Central Google Scholar
Rajdev S, Sharp F (2000) Stress proteins as molecular markers of neurotoxicity. Toxicol Pathol 28(1):105–112
Article CAS PubMed Google Scholar
Farber N, Hanslick J, Kirby C, McWilliams L, Olney J (1998) Serotonergic agents that activate 5HT2A receptors prevent NMDA antagonist neurotoxicity. Psychopharmacology 18(1):57–62
Auer R (1996) Effect of age and sex on N-methyl-D-aspartate antagonist-induced neuronal necrosis in rats. Stroke 27(4):743–746
Article CAS PubMed Google Scholar
Madsen MK, Fisher PM, Stenbæk DS, Kristiansen S, Burmester D, Lehel S, Páleníček T, Kuchař M, Svarer C, Ozenne B, Knudsen GM (2020) A single psilocybin dose is associated with long-term increased mindfulness, preceded by a proportional change in neocortical 5-HT2A receptor binding. Eur Neuropsychopharmacol 33:71–80. https://doi.org/10.1016/j.euroneuro.2020.02.001
Article CAS PubMed Google Scholar
Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS, Kristiansen S, Johansen SS, Lehel S, Linnet K, Svarer C, Erritzoe D, Ozenne B, Knudsen GM (2019) Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44(7):1328–1334. https://doi.org/10.1038/s41386-019-0324-9
Article CAS PubMed PubMed Central Google Scholar
Madsen MK, Stenbæk DS, Arvidsson A, Armand S, Marstrand-Joergensen MR, Johansen SS, Linnet K, Ozenne B, Knudsen GM, Fisher PM (2021) Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. Eur Neuropsychopharmacol 50:121–132. https://doi.org/10.1016/j.euroneuro.2021.06.001
Article CAS PubMed Google Scholar
McCulloch DE-W, Grzywacz MZ, Madsen MK, Jensen PS, Ozenne B, Armand S, Knudsen GM, Fisher PM, Stenbæk DS (2022) Psilocybin-induced mystical-type experiences are related to persisting positive effects: a quantitative and qualitative report. Front Pharmacol 13:841648. https://doi.org/10.3389/fphar.2022.841648
Article CAS PubMed PubMed Central Google Scholar
McCulloch DE-W, Madsen MK, Stenbæk DS, Kristiansen S, Ozenne B, Jensen PS, Knudsen GM, Fisher PM (2022) Lasting effects of a single psilocybin dose on resting-state functional connectivity in healthy individuals. J Psychopharmacol 36(1):74–84. https://doi.org/10.1177/02698811211026454
Article CAS PubMed Google Scholar
Olsen AS, Lykkebo-Valløe A, Ozenne B, Madsen MK, Stenbæk DS, Armand S, Mørup M, Ganz M, Knudsen GM, Fisher PM (2022) Psilocybin modulation of time-varying functional connectivity is associated with plasma psilocin and subjective effects. Neuroimage 264:119716. https://doi.org/10.1016/j.neuroimage.2022.119716
Søndergaard A, Madsen MK, Ozenne B, Armand S, Knudsen GM, Fisher PM, Stenbæk DS (2022) Lasting increases in trait mindfulness after psilocybin correlate positively with the mystical-type experience in healthy individuals. Front Psychol 13:948729. https://doi.org/10.3389/fpsyg.2022.948729
Article PubMed PubMed Central Google Scholar
Burmester DR, Madsen MK, Szabo A, Aripaka SS, Stenbæk DS, Frokjaer VG, Elfving B, Mikkelsen JD, Knudsen GM, Fisher PM (2023) Subacute effects of a single dose of psilocybin on biomarkers of inflammation in healthy humans: an open-label preliminary investigation. Compr Psychoneuroendocrinol 13:100163. https://doi.org/10.1016/j.cpnec.2022.100163
Donovan LL, Johansen JV, Ros NF, Jaberi E, Linnet K, Johansen SS, Ozenne B, Issazadeh-Navikas S, Hansen HD, Knudsen GM (2021) Effects of a single dose of psilocybin on behaviour, brain 5-HT2A receptor occupancy and gene expression in the pig. Eur Neuropsychopharmacol 42:1–11. https://doi.org/10.1016/j.euroneuro.2020.11.013
Article CAS PubMed Google Scholar
Raval NR, Johansen A, Donovan LL, Ros NF, Ozenne B, Hansen HD, Knudsen GM (2021) A single dose of psilocybin increases synaptic density and decreases 5-HT2A receptor density in the pig brain. Int J Mol Sci. https://doi.org/10.3390/ijms22020835
Comments (0)