Candida albicans and Antifungal Peptides

Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15(2):96–108.

Article  CAS  PubMed  Google Scholar 

Blanco JL, Garcia ME. Immune response to fungal infections. Vet Immunol Immunopathol. 2008;125(1–2):47–70.

Article  CAS  PubMed  Google Scholar 

Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol. 2007;45(4):321–46.

Article  PubMed  Google Scholar 

da Fonseca STD, Teixeira TR, Ferreira JMS, Lima L, Luyten W, Castro AHF. Flavonoid-rich fractions of bauhinia holophylla leaves inhibit Candida albicans biofilm formation and hyphae growth. Plants (Basel). 2022;11(14):1796.

Article  PubMed  Google Scholar 

Salama OE, Gerstein AC. Differential response of Candida species morphologies and isolates to fluconazole and boric acid. Antimicrob Agents Chemother. 2022;66(5):e0240621.

Article  PubMed  Google Scholar 

Holzheimer RG, Dralle H. Management of mycoses in surgical patients—review of the literature. Eur J Med Res. 2002;7(5):200–26.

PubMed  Google Scholar 

Lim CS, Rosli R, Seow HF, Chong PP. Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis. 2012;31(1):21–31.

Article  PubMed  Google Scholar 

Arendrup MC. Candida and candidaemia. Susceptibility and epidemiology. Dan Med J. 2013;60(11):B4698.

PubMed  Google Scholar 

Sandven P. Epidemiology of candidemia. Rev Iberoam Micol. 2000;17(3):73–81.

CAS  PubMed  Google Scholar 

Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu X, Zhang S, Li H, et al. Biofilm formation of Candida albicans facilitates fungal infiltration and persister cell formation in vaginal candidiasis. Front Microbiol. 2020;11:1117.

Article  PubMed  PubMed Central  Google Scholar 

Hazan I, Sepulveda-Becerra M, Liu H. Hyphal elongation is regulated independently of cell cycle in Candida albicans. Mol Biol Cell. 2002;13(1):134–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12(7):317–24.

Article  CAS  PubMed  Google Scholar 

Osman RB, Khoder G, Fayed B, Kedia RA, Elkareimi Y, Alharbi N. Influence of fabrication technique on adhesion and biofilm formation of Candida albicans to conventional, milled, and 3D-printed denture base resin materials: a comparative in vitro study. Polymers (Basel). 2023;15(8):1836.

Article  CAS  PubMed  Google Scholar 

Kumamoto CA, Vinces MD. Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol. 2005;59:113–33.

Article  CAS  PubMed  Google Scholar 

Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–28.

Article  PubMed  PubMed Central  Google Scholar 

Prasad P, Tippana M. Morphogenic plasticity: the pathogenic attribute of Candida albicans. Curr Genet. 2023;69(2–3):77–89.

Article  CAS  PubMed  Google Scholar 

Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: the yeast-hyphal transition of Candida albicans. Pathogens. 2021;10(7):859.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moyes DL, Richardson JP, Naglik JR. Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence. 2015;6(4):338–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu Y, Su C, Liu H. Candida albicans hyphal initiation and elongation. Trends Microbiol. 2014;22(12):707–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalle F, Wachtler B, L’Ollivier C, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010;12(2):248–71.

Article  CAS  PubMed  Google Scholar 

Jacobsen ID. The role of host and fungal factors in the commensal-to-pathogen transition of Candida albicans. Curr Clin Microbiol Rep. 2023;10(2):55–65.

Article  PubMed  PubMed Central  Google Scholar 

Corrêa-Junior D, Andrade IB, Alves V, Araújo GRS, Frases S. Clinical challenges of emerging and re-emerging yeast infections in the context of the COVID-19 pandemic. Microorganisms. 2022;10(11):2223.

Article  PubMed  PubMed Central  Google Scholar 

Clark TA, Slavinski SA, Morgan J, et al. Epidemiologic and molecular characterization of an outbreak of Candida parapsilosis bloodstream infections in a community hospital. J Clin Microbiol. 2004;42(10):4468–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Posteraro B, Torelli R, Vella A, et al. Pan-echinocandin-resistant Candida glabrata bloodstream infection complicating COVID-19: a fatal case report. J Fungi (Basel). 2020;6(3):163.

Article  CAS  PubMed  Google Scholar 

Blumberg HM, Jarvis WR, Soucie JM, et al. Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey. Clin Infect Dis. 2001;33(2):177–86.

Article  CAS  PubMed  Google Scholar 

Yamin DH, Husin A, Harun A. Risk factors of Candida parapsilosis catheter-related bloodstream infection. Front Public Health. 2021;9:631865.

Article  PubMed  PubMed Central  Google Scholar 

Taei M, Chadeganipour M, Mohammadi R. An alarming rise of non-albicans Candida species and uncommon yeasts in the clinical samples; a combination of various molecular techniques for identification of etiologic agents. BMC Res Notes. 2019;12(1):779.

Article  PubMed  PubMed Central  Google Scholar 

Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog. 2022;164: 105418.

Article  CAS  PubMed  Google Scholar 

Chen YN, Hsu JF, Chu SM, et al. Clinical and microbiological characteristics of neonates with candidemia and impacts of therapeutic strategies on the outcomes. J Fungi (Basel). 2022;8(5):465.

Article  CAS  PubMed  Google Scholar 

Barbosa VB, Rodrigues CF, Cerqueira L, Miranda JM, Azevedo NF. Microfluidics combined with fluorescence in situ hybridization (FISH) for Candida spp. detection. Front Bioeng Biotechnol. 2022;10:987669.

Article  PubMed  PubMed Central  Google Scholar 

Salvatori O, Puri S, Tati S, Edgerton M. Innate immunity and saliva in Candida albicans-mediated oral diseases. J Dent Res. 2016;95(4):365–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woolford CA, Lagree K, Xu W, et al. Bypass of Candida albicans filamentation/biofilm regulators through diminished expression of protein kinase Cak1. PLoS Genet. 2016;12(12):e1006487.

Article  PubMed  PubMed Central  Google Scholar 

Do E, Cravener MV, Huang MY, May G, McManus CJ, Mitchell AP. Collaboration between antagonistic cell type regulators governs natural variation in the Candida albicans biofilm and hyphal gene expression network. MBio. 2022;13(5):e0193722.

Article  PubMed  Google Scholar 

Leach MD, Farrer RA, Tan K, et al. Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans. Nat Commun. 2016;7:11704.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Meara TR, Alspaugh JA. The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev. 2012;25(3):387–408.

Article  PubMed  PubMed Central  Google Scholar 

Sellam A, Whiteway M. Recent advances on Candida albicans biology and virulence. F1000Res. 2016;5:2582.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif