Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15(2):96–108.
Article CAS PubMed Google Scholar
Blanco JL, Garcia ME. Immune response to fungal infections. Vet Immunol Immunopathol. 2008;125(1–2):47–70.
Article CAS PubMed Google Scholar
Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol. 2007;45(4):321–46.
da Fonseca STD, Teixeira TR, Ferreira JMS, Lima L, Luyten W, Castro AHF. Flavonoid-rich fractions of bauhinia holophylla leaves inhibit Candida albicans biofilm formation and hyphae growth. Plants (Basel). 2022;11(14):1796.
Salama OE, Gerstein AC. Differential response of Candida species morphologies and isolates to fluconazole and boric acid. Antimicrob Agents Chemother. 2022;66(5):e0240621.
Holzheimer RG, Dralle H. Management of mycoses in surgical patients—review of the literature. Eur J Med Res. 2002;7(5):200–26.
Lim CS, Rosli R, Seow HF, Chong PP. Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis. 2012;31(1):21–31.
Arendrup MC. Candida and candidaemia. Susceptibility and epidemiology. Dan Med J. 2013;60(11):B4698.
Sandven P. Epidemiology of candidemia. Rev Iberoam Micol. 2000;17(3):73–81.
Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385–94.
Article CAS PubMed PubMed Central Google Scholar
Wu X, Zhang S, Li H, et al. Biofilm formation of Candida albicans facilitates fungal infiltration and persister cell formation in vaginal candidiasis. Front Microbiol. 2020;11:1117.
Article PubMed PubMed Central Google Scholar
Hazan I, Sepulveda-Becerra M, Liu H. Hyphal elongation is regulated independently of cell cycle in Candida albicans. Mol Biol Cell. 2002;13(1):134–45.
Article CAS PubMed PubMed Central Google Scholar
Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12(7):317–24.
Article CAS PubMed Google Scholar
Osman RB, Khoder G, Fayed B, Kedia RA, Elkareimi Y, Alharbi N. Influence of fabrication technique on adhesion and biofilm formation of Candida albicans to conventional, milled, and 3D-printed denture base resin materials: a comparative in vitro study. Polymers (Basel). 2023;15(8):1836.
Article CAS PubMed Google Scholar
Kumamoto CA, Vinces MD. Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol. 2005;59:113–33.
Article CAS PubMed Google Scholar
Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–28.
Article PubMed PubMed Central Google Scholar
Prasad P, Tippana M. Morphogenic plasticity: the pathogenic attribute of Candida albicans. Curr Genet. 2023;69(2–3):77–89.
Article CAS PubMed Google Scholar
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: the yeast-hyphal transition of Candida albicans. Pathogens. 2021;10(7):859.
Article CAS PubMed PubMed Central Google Scholar
Moyes DL, Richardson JP, Naglik JR. Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence. 2015;6(4):338–46.
Article CAS PubMed PubMed Central Google Scholar
Lu Y, Su C, Liu H. Candida albicans hyphal initiation and elongation. Trends Microbiol. 2014;22(12):707–14.
Article CAS PubMed PubMed Central Google Scholar
Dalle F, Wachtler B, L’Ollivier C, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010;12(2):248–71.
Article CAS PubMed Google Scholar
Jacobsen ID. The role of host and fungal factors in the commensal-to-pathogen transition of Candida albicans. Curr Clin Microbiol Rep. 2023;10(2):55–65.
Article PubMed PubMed Central Google Scholar
Corrêa-Junior D, Andrade IB, Alves V, Araújo GRS, Frases S. Clinical challenges of emerging and re-emerging yeast infections in the context of the COVID-19 pandemic. Microorganisms. 2022;10(11):2223.
Article PubMed PubMed Central Google Scholar
Clark TA, Slavinski SA, Morgan J, et al. Epidemiologic and molecular characterization of an outbreak of Candida parapsilosis bloodstream infections in a community hospital. J Clin Microbiol. 2004;42(10):4468–72.
Article CAS PubMed PubMed Central Google Scholar
Posteraro B, Torelli R, Vella A, et al. Pan-echinocandin-resistant Candida glabrata bloodstream infection complicating COVID-19: a fatal case report. J Fungi (Basel). 2020;6(3):163.
Article CAS PubMed Google Scholar
Blumberg HM, Jarvis WR, Soucie JM, et al. Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey. Clin Infect Dis. 2001;33(2):177–86.
Article CAS PubMed Google Scholar
Yamin DH, Husin A, Harun A. Risk factors of Candida parapsilosis catheter-related bloodstream infection. Front Public Health. 2021;9:631865.
Article PubMed PubMed Central Google Scholar
Taei M, Chadeganipour M, Mohammadi R. An alarming rise of non-albicans Candida species and uncommon yeasts in the clinical samples; a combination of various molecular techniques for identification of etiologic agents. BMC Res Notes. 2019;12(1):779.
Article PubMed PubMed Central Google Scholar
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog. 2022;164: 105418.
Article CAS PubMed Google Scholar
Chen YN, Hsu JF, Chu SM, et al. Clinical and microbiological characteristics of neonates with candidemia and impacts of therapeutic strategies on the outcomes. J Fungi (Basel). 2022;8(5):465.
Article CAS PubMed Google Scholar
Barbosa VB, Rodrigues CF, Cerqueira L, Miranda JM, Azevedo NF. Microfluidics combined with fluorescence in situ hybridization (FISH) for Candida spp. detection. Front Bioeng Biotechnol. 2022;10:987669.
Article PubMed PubMed Central Google Scholar
Salvatori O, Puri S, Tati S, Edgerton M. Innate immunity and saliva in Candida albicans-mediated oral diseases. J Dent Res. 2016;95(4):365–71.
Article CAS PubMed PubMed Central Google Scholar
Woolford CA, Lagree K, Xu W, et al. Bypass of Candida albicans filamentation/biofilm regulators through diminished expression of protein kinase Cak1. PLoS Genet. 2016;12(12):e1006487.
Article PubMed PubMed Central Google Scholar
Do E, Cravener MV, Huang MY, May G, McManus CJ, Mitchell AP. Collaboration between antagonistic cell type regulators governs natural variation in the Candida albicans biofilm and hyphal gene expression network. MBio. 2022;13(5):e0193722.
Leach MD, Farrer RA, Tan K, et al. Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans. Nat Commun. 2016;7:11704.
Article CAS PubMed PubMed Central Google Scholar
O’Meara TR, Alspaugh JA. The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev. 2012;25(3):387–408.
Article PubMed PubMed Central Google Scholar
Sellam A, Whiteway M. Recent advances on Candida albicans biology and virulence. F1000Res. 2016;5:2582.
Comments (0)