Role of lipins in cardiovascular diseases

Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res. 2017;121(6):677–94. https://doi.org/10.1161/CIRCRESAHA.117.308903.

Article  CAS  PubMed  Google Scholar 

Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Back M, et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337. https://doi.org/10.1093/eurheartj/ehab484.

Article  PubMed  Google Scholar 

Han GS, Wu WI, Carman GM. The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem. 2006;281(14):9210–8. https://doi.org/10.1074/jbc.M600425200.

Article  CAS  PubMed  Google Scholar 

Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 2006;4(3):199–210. https://doi.org/10.1016/j.cmet.2006.08.005.

Article  CAS  PubMed  Google Scholar 

Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, Reue K. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem. 2007;282(6):3450–7. https://doi.org/10.1074/jbc.M610745200.

Article  CAS  PubMed  Google Scholar 

Reue K, Wang H. Mammalian lipin phosphatidic acid phosphatases in lipid synthesis and beyond: metabolic and inflammatory disorders. J Lipid Res. 2019;60(4):728–33. https://doi.org/10.1194/jlr.S091769.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balboa MA, de Pablo N, Meana C, Balsinde J. The role of lipins in innate immunity and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(10):1328–37. https://doi.org/10.1016/j.bbalip.2019.06.003.

Article  CAS  PubMed  Google Scholar 

Reue K. The lipin family: mutations and metabolism. Curr Opin Lipidol. 2009;20(3):165–70. https://doi.org/10.1097/MOL.0b013e32832adee5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peterfy M, Phan J, Xu P, Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet. 2001;27(1):121–4. https://doi.org/10.1038/83685.

Article  CAS  PubMed  Google Scholar 

Gu W, Gao S, Wang H, Fleming KD, Hoffmann RM, Yang JW, et al. The middle lipin domain adopts a membrane-binding dimeric protein fold. Nat Commun. 2021;12(1):4718. https://doi.org/10.1038/s41467-021-24929-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carman GM, Han GS. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci. 2006;31(12):694–9. https://doi.org/10.1016/j.tibs.2006.10.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khayyo VI, Hoffmann RM, Wang H, Bell JA, Burke JE, Reue K, et al. Crystal structure of a lipin/Pah phosphatidic acid phosphatase. Nat Commun. 2020;11(1):1309. https://doi.org/10.1038/s41467-020-15124-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren H, Federico L, Huang H, Sunkara M, Drennan T, Frohman MA, et al. A phosphatidic acid binding/nuclear localization motif determines lipin1 function in lipid metabolism and adipogenesis. Mol Biol Cell. 2010;21(18):3171–81. https://doi.org/10.1091/mbc.E10-01-0073.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Csaki LS, Dwyer JR, Li X, Nguyen MH, Dewald J, Brindley DN, et al. Lipin-1 and lipin-3 together determine adiposity in vivo. Mol Metab. 2014;3(2):145–54. https://doi.org/10.1016/j.molmet.2013.11.008.

Article  CAS  PubMed  Google Scholar 

Reue K, Zhang PX. The lipin protein family: Dual roles in lipid biosynthesis and gene expression. Febs Lett. 2008;582(1):90–6. https://doi.org/10.1016/j.febslet.2007.11.014.

Article  CAS  PubMed  Google Scholar 

Kok BPC, Dyck JRB, Harris TE, Brindley DN. Differential regulation of the expressions of the PGC-1α splice variants, lipins, and PPARα in heart compared to liver. J Lipid Res. 2013;54(6):1662–77. https://doi.org/10.1194/jlr.M036624.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HE, Bae E, Jeong DY, Kim MJ, Jin WJ, Park SW, et al. Lipin1 regulates PPARgamma transcriptional activity. Biochem J. 2013;453(1):49–60. https://doi.org/10.1042/BJ20121598.

Article  CAS  PubMed  Google Scholar 

Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408–20. https://doi.org/10.1016/j.cell.2011.06.034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HB, Kumar A, Wang L, Liu GH, Keller SR, Lawrence JC, Jr, et al. Lipin 1 represses NFATc4 transcriptional activity in adipocytes to inhibit secretion of inflammatory factors. Mol Cell Biol. 2010;30(12):3126–39. https://doi.org/10.1128/MCB.01671-09.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peterfy M, Phan J, Reue K. Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J Biol Chem. 2005;280(38):32883–9. https://doi.org/10.1074/jbc.M503885200.

Article  CAS  PubMed  Google Scholar 

Han GS, Carman GM. Characterization of the human LPIN1-encoded phosphatidate phosphatase isoforms. J Biol Chem. 2010;285(19):14628–38. https://doi.org/10.1074/jbc.M110.117747.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Zhang J, Qiu W, Han GS, Carman GM, Adeli K. Lipin-1gamma isoform is a novel lipid droplet-associated protein highly expressed in the brain. FEBS Lett. 2011;585(12):1979–84. https://doi.org/10.1016/j.febslet.2011.05.035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Majeed HA, Kalaawi M, Mohanty D, Teebi AS, Tunjekar MF, al-gharbawy F, et al. Congenital dyserythropoietic anemia and chronic recurrent multifocal osteomyelitis in three related children and the association with Sweet syndrome in two siblings. J Pediatr. 1989;115(5 Pt 1):730–4.

Article  CAS  PubMed  Google Scholar 

Ferguson PJ, Chen S, Tayeh MK, Ochoa L, Leal SM, Pelet A, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet. 2005;42(7):551–7. https://doi.org/10.1136/jmg.2005.030759.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donkor J, Zhang P, Wong S, O’Loughlin L, Dewald J, Kok BP, et al. A conserved serine residue is required for the phosphatidate phosphatase activity but not the transcriptional coactivator functions of lipin-1 and lipin-2. J Biol Chem. 2009;284(43):29968–78. https://doi.org/10.1074/jbc.M109.023663.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gropler MC, Harris TE, Hall AM, Wolins NE, Gross RW, Han X, et al. Lipin 2 is a liver-enriched phosphatidate phosphohydrolase enzyme that is dynamically regulated by fasting and obesity in mice. J Biol Chem. 2009;284(11):6763–72. https://doi.org/10.1074/jbc.M807882200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitra MS, Schilling JD, Wang X, Jay PY, Huss JM, Su X, et al. Cardiac lipin 1 expression is regulated by the peroxisome proliferator activated receptor gamma coactivator 1alpha/estrogen related receptor axis. J Mol Cell Cardiol. 2011;51(1):120–8. https://doi.org/10.1016/j.yjmcc.2011.04.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang F, Liu YX, Dong Y, Zhao MF, Huang H, Jin JY, et al. Haploinsufficiency of Lipin3 leads to hypertriglyceridemia and obesity by disrupting the expression and nucleocytoplasmic localization of Lipin1. Front Med-Prc. 2023. https://doi.org/10.1007/s11684-023-1003-0.

Article  Google Scholar 

Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac Energy Metabolism in Heart Failure. Circ Res. 2021;128(10):1487–513. https://doi.org/10.1161/CIRCRESAHA.121.318241.

Article  CAS  PubMed  Google Scholar 

Harris TE, Huffman TA, Chi A, Shabanowitz J, Hunt DF, Kumar A, et al. Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1. J Biol Chem. 2007;282(1):277–86. https://doi.org/10.1074/jbc.M609537200.

Article  CAS  PubMed  Google Scholar 

Langner CA, Birkenmeier EH, Ben-Zeev O, Schotz MC, Sweet HO, Davisson MT, et al. The fatty liver dystrophy mutation. A new mutant mouse with a developmental abnormality in triglyceride metabolism and associated tissue-specific defects in lipoprotein lipase and hepatic lipase activities. J Biol Chem. 1989;264(14):7994–8003.

Article  CAS  PubMed 

Comments (0)

No login
gif