Exploring the Therapeutic Effects and Mechanisms of Transcranial Alternating Current Stimulation on Improving Walking Ability in Stroke Patients via Modulating Cerebellar Gamma Frequency Band—a Narrative Review

Hamacher D, Herold F, Wiegel P, Hamacher D, Schega L. Brain activity during walking: a systematic review. Neurosci Biobehav Rev. 2015;57:310–27.

Article  PubMed  Google Scholar 

Li S, Francisco GE, Zhou P. Post-stroke hemiplegic gait: new perspective and insights. Front Physiol. 2018;9:1021.

Article  PubMed  PubMed Central  Google Scholar 

Lisanby SH, Luber B, Perera T, Sackeim HA. Transcranial magnetic stimulation: applications in basic neuroscience and neuropsychopharmacology. Int J Neuropsychopharmacol. 2000;3(3):259–73.

Article  PubMed  Google Scholar 

Gaojing X, Yi W. Research progress on the effect of new rehabilitation treatment techniques on brain plasticity after stroke. Chin J Phys Med Rehabil. 2019;41(2):150–3.

Google Scholar 

Veldema J, Gharabaghi A. Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke. J Neuroeng Rehabil. 2022;19(1):84.

Article  PubMed  PubMed Central  Google Scholar 

Cheng HL, Lin CH, Tseng SH, Peng CW, Lai CH. Effectiveness of repetitive transcranial magnetic stimulation combined with visual feedback training in improving neuroplasticity and lower limb function after chronic stroke: a pilot study. Biology (Basel). 2023;12(4):515.

PubMed  PubMed Central  Google Scholar 

Kuwahara W, Sasaki S, Yamamoto R, Kawakami M, Kaneko F. The effects of robot-assisted gait training combined with non-invasive brain stimulation on lower limb function in patients with stroke and spinal cord injury: a systematic review and meta-analysis. Front Hum Neurosci. 2022;16: 969036.

Article  PubMed  PubMed Central  Google Scholar 

Krogh S, Jønsson AB, Aagaard P, Kasch H. Efficacy of repetitive transcranial magnetic stimulation for improving lower limb function in individuals with neurological disorders: a systematic review and meta-analysis of randomized sham-controlled trials. J Rehabil Med. 2022;54:jrm00256.

Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.

Article  PubMed  PubMed Central  Google Scholar 

0 Rodríguez-Takeuchi SY, Baena-Caldas GP, Orejuela-Zapata JF, Granados Sánchez AM. Analysis of the pattern of functional activation of the cerebellum and its topographical correlation. Análisis del patrón de activación funcional del cerebelo y su correlación topográfica. Radiologia (Engl Ed). 2020;62(4):298–305.

Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C. Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage. 2012;59(3):2771–82.

Article  PubMed  Google Scholar 

Ntakou EA, Nasios G, Nousia A, Siokas V, Messinis L, Dardiotis E. Targeting cerebellum with non-invasive transcranial magnetic or current stimulation after cerebral hemispheric stroke-insights for corticocerebellar network reorganization: a comprehensive review. Healthcare (Basel). 2022;10(12):2401.

Article  PubMed  Google Scholar 

Marinho V, Pinto GR, Bandeira J, Oliveira T, Carvalho V, Rocha K, Magalhães F, de Sousa VG, Bastos VH, Gupta D, Orsini M, Teixeira S. Impaired decision-making and time perception in individuals with stroke: behavioral and neural correlates. Rev Neurol (Paris). 2019;175(6):367–76.

Article  CAS  PubMed  Google Scholar 

Naro A, Milardi D, Cacciola A, Russo M, Sciarrone F, La Rosa G, Bramanti A, Bramanti P, Calabrò RS. What do we know about the influence of the cerebellum on walking ability? Promising findings from transcranial alternating current stimulation. Cerebellum. 2017;16(4):859–67.

Article  PubMed  Google Scholar 

Drijkoningen D, Leunissen I, Caeyenberghs K, Hoogkamer W, Sunaert S, Duysens J, Swinnen SP. Regional volumes in brain stem and cerebellum are associated with postural impairments in young brain-injured patients. Hum Brain Mapp. 2015;36(12):4897–909.

Article  PubMed  PubMed Central  Google Scholar 

Zabihhosseinian M, Yielder P, Berkers V, Ambalavanar U, Holmes M, Murphy B. Neck muscle fatigue impacts plasticity and sensorimotor integration in cerebellum and motor cortex in response to novel motor skill acquisition. J Neurophysiol. 2020;124(3):844–55.

Article  PubMed  PubMed Central  Google Scholar 

Richard A, Van Hamme A, Drevelle X, Golmard JL, Meunier S, Welter ML. Contribution of the supplementary motor area and the cerebellum to the anticipatory postural adjustments and execution phases of human gait initiation. Neuroscience. 2017;358:181–9.

Article  CAS  PubMed  Google Scholar 

Jung JH, Kim BH, Chung SJ, Yoo HS, Lee YH, Baik K, Ye BS, Sohn YH, Lee JM, Lee PH. Motor cerebellar connectivity and future development of freezing of gait in de novo Parkinson’s disease. Mov Disord. 2020;35(12):2240–9.

Article  PubMed  Google Scholar 

Rodríguez-Takeuchi SY, Baena-Caldas GP, Orejuela-Zapata JF, Granados Sánchez AM. Analysis of the pattern of functional activation of the cerebellum and its topographical correlation. Radiologia (Engl Ed). 2020;62(4):298–305.

Article  PubMed  Google Scholar 

Bukhari Q, Ruf SF, Guell X, Whitfield-Gabrieli S, Anteraper S. Interaction between cerebellum and cerebral cortex, evidence from dynamic causal modeling. Cerebellum. 2022;21(2):225–33.

Article  PubMed  Google Scholar 

Lee HA, Kim DH. Brain connectivity affecting gait function after unilateral supratentorial stroke. Brain Sci. 2021;11(7):870.

Article  PubMed  PubMed Central  Google Scholar 

Cabaraux P, Agrawal SK, Cai H, Calabro RS, Casali C, Damm L, Doss S, Habas C, Horn AKE, Ilg W, Louis ED, Mitoma H, Monaco V, Petracca M, Ranavolo A, Rao AK, Ruggieri S, Schirinzi T, Serrao M, Summa S, Strupp M, Surgent O, Synofzik M, Tao S, Terasi H, Torres-Russotto D, Travers B, Roper JA, Manto M. Consensus paper: ataxic gait. Cerebellum. 2023;22(3):394–430.

Article  PubMed  Google Scholar 

Matsugi A. Do changes in spinal reflex excitability elicited by transcranial magnetic stimulation differ based on the site of cerebellar stimulation? Somatosens Mot Res. 2018;35(2):80–5.

Article  PubMed  Google Scholar 

Kiehn O. Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci. 2016;17(4):224–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci. 2002;5(11):1226–35.

Article  CAS  PubMed  Google Scholar 

Morelli N, Hoch M. A proposed postural control theory synthesizing optimal feedback control theory, postural motor learning, and cerebellar supervision learning. Percept Mot Skills. 2020;127(6):1118–33.

Article  PubMed  Google Scholar 

Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21(9):370–5.

Article  CAS  PubMed  Google Scholar 

van Es DM, van der Zwaag W, Knapen T. Topographic maps of visual space in the human cerebellum. Curr Biol. 2019;29(10):1689–94.

Article  PubMed  Google Scholar 

Mizelle JC, Oparah A, Wheaton LA. Reliability of visual and somatosensory feedback in skilled movement: the role of the cerebellum. Brain Topogr. 2016;29(1):27–41.

Article  CAS  PubMed  Google Scholar 

Schniepp R, Möhwald K, Wuehr M. Gait ataxia in humans: vestibular and cerebellar control of dynamic stability. J Neurol. 2017;264:87–92.

Article  PubMed  Google Scholar 

Li DB, Yao J, Sun L, Wu B, Li X, Liu SL, Hou JM, Liu HL, Sui JF, Wu GY. Reevaluating the ability of cerebellum in associative motor learning. Sci Rep. 2019;9(1):6029.

Article  PubMed  PubMed Central  Google Scholar 

González-Tapia D, González-Ramírez MM, Vázquez-Hernández N, González-Burgos I. Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum. Neurologia (Engl Ed). 2020;35(7):451–7.

Article  PubMed  Google Scholar 

Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. J Neurosci. 2011;31(6):2305–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ, Heck DH, Jaeger D, Jörntell H, Kawato M, Otis TS, Ozyildirim O, Popa LS, Reeves AM, Schweighofer N, Sugihara I, Xiao J. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper Cerebellum. 2017;16(1):230–52.

Article  PubMed  Google Scholar 

Wu B, Yao J, Wu GY, Li X, Gao WJ, Zhang RW, Sui JF. Absence of associative motor learning and impaired time perception in a rare case of complete cerebellar agenesis. Neuropsychologia. 2018;117:551–7.

Article  PubMed  Google Scholar 

Hermsdorf F, Fricke C, Stockert A, Classen J, Rumpf JJ. Motor performance but neither motor learning nor motor consolidation are impaired in chronic cerebellar stroke patients. Cerebellum. 2020;19(2):275–85.

Article  PubMed  PubMed Central  Google Scholar 

Magon S, Pfister A, Laura G, Lüthi M, Papadopoulou A, Kappos L, Sprenger T. Short timescale modulation of cortical and cerebellar activity in the early phase of motor sequence learning: an fMRI study. Brain Imaging Behav. 2020;14(6):2159–75.

Article  PubMed  Google Scholar 

Carey MR, Myoga MH, McDaniels KR, Marsicano G, Lutz B, Mackie K, Regehr WG. Presynaptic CB1 receptors regulate synaptic plasticity at cerebellar parallel fiber synapses. J Neurophysiol. 2011;105(2):958–63.

Article  CAS  PubMed  Google Scholar 

Hull C. Prediction signals in the cerebellum: beyond supervised motor learning. Elife. 2020;9: e54073.

Article  PubMed 

Comments (0)

No login
gif