Antiviral potency of lupane and oleanane alkynyl-derivatives against human cytomegalovirus and papillomavirus

Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006;23:394–411. https://doi.org/10.1039/b515312n.

Article  CAS  PubMed  Google Scholar 

Salvador JAR, Leal AS, Valdeira AS, Gonçalves BMF, Alho DPS, Figueiredo SAC, Silvestre SM, Mendes VIS. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: recent advances in cancer treatment. Eur J Med Chem. 2017;142:95–130. https://doi.org/10.1016/j.ejmech.2017.07.013.

Article  CAS  PubMed  Google Scholar 

Isah MB, Ibrahim MA, Mohammed A, Aliyu AB, Masola B, Coetzer TH. A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitology. 2016;143:1219–31. https://doi.org/10.1017/S0031182016000718.

Article  CAS  PubMed  Google Scholar 

Martin DE, Salzwedel K, Allaway GP. Bevirimat: a novel maturation inhibitor for the treatment of HIV-1 infection. Antivir Chem Chemother. 2008;19:107–13. https://doi.org/10.1177/095632020801900301.

Article  CAS  PubMed  Google Scholar 

Frew Q, Rennekampff HO, Dziewulski P, Moiemen N. BBW-11 Study Group; Zahn T, Hartmann B. Betulin wound gel accelerated healing of superficial partial thickness burns: results of a randomized, intra-individually controlled, phase III trial with 12-months follow-up. Burns. 2019;45:876–90. https://doi.org/10.1016/j.burns.2018.10.019.

Article  PubMed  Google Scholar 

Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev. 2018;38:951–76. https://doi.org/10.1002/med.21484.

Article  PubMed  PubMed Central  Google Scholar 

Lee KH. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J Nat Prod. 2010;73:500–16. https://doi.org/10.1021/np900821e.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kashiwada Y, Nagao T, Hashimoto A, Ikeshiro Y, Okabe H, Cosentino LM, Lee KH. Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives. J Nat Prod. 2000;63:1619–22. https://doi.org/10.1021/np990633v.

Article  CAS  PubMed  Google Scholar 

Deng SL, Baglin I, Nour M, Flekhter O, Vita C, Cavé C. Synthesis of ursolic phosphonate derivatives as potential anti-HIV agents. Phosphorus Sulfur Silicon Relat Elem 2007;182:951–67. https://doi.org/10.1080/10426500601088838.

Article  CAS  Google Scholar 

Gong Y, Raj KM, Luscombe CA, Gadawski I, Tam T, Chu J, Gibson D, Carlson R, Sacks SL. The synergistic effects of betulin with acyclovir against herpes simplex viruses. Antivir Res. 2004;64:127–30. https://doi.org/10.1016/j.antiviral.2004.05.006.

Article  CAS  PubMed  Google Scholar 

Baltina LA, Flekhter OB, Nigmatullina LR, Boreko EI, Pavlova NI, Nikolaeva SN, Savinova OV, Tolstikov GA. Lupane triterpenes and derivatives with antiviral activity. Bioorg Med Chem Lett. 2003;13:3549–52. https://doi.org/10.1016/s0960-894x(03)00714-5.

Article  CAS  PubMed  Google Scholar 

Pavlova NI, Savinova OV, Nikolaeva SN, Boreko EI, Flekhter OB. Antiviral activity of betulin, betulinic and betulonic acids against some enveloped and non-enveloped viruses. Fitoterapia. 2003;74:489–92. https://doi.org/10.1016/s0367-326x(03)00123-0.

Article  CAS  PubMed  Google Scholar 

Kazakova OB, Giniyatullina GV, Yamansarov EY, Tolstikov GA. Betulin and ursolic acid synthetic derivatives as inhibitors of Papilloma virus. Bioorg Med Chem Lett. 2010;20:4088–90. https://doi.org/10.1016/j.bmcl.2010.05.083.

Article  CAS  PubMed  Google Scholar 

Kazakova OB, Medvedeva NI, Baikova IP, Tolstikov GA, Lopatina TV, Yunusov MS, Zaprutko L. Synthesis of triterpenoid acylates: effective reproduction inhibitors of influenza A (H1N1) and papilloma viruses. Russ J Bioorg Chem. 2010;36:771–8. https://doi.org/10.1134/S1068162010060142.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khusnutdinova EF, Kazakova OB, Lobov AN, Kukovinets OS, Suponitsky KY, Meyers CB, Prichard MN. Synthesis of A-ring quinolones, nine-membered oxolactams and spiroindoles by oxidative transformations of 2,3-indolotriterpenoids. Org Biomol Chem. 2019;17:585–97. https://doi.org/10.1039/c8ob02624f.

Article  CAS  PubMed  Google Scholar 

Savinova OV, Pavlova NI, Boreko EI. [New betulin derivatives in combination with rimantadine for inhibition of influenza virus reproduction]. Antibiot Khimioter. 2009;54:16–20.

CAS  PubMed  Google Scholar 

Karagöz AÇ, Leidenberger M, Hahn F, Hampel F, Friedrich O, Marschall M, Kappes B, Tsogoeva SB. Synthesis of new betulinic acid/betulin-derived dimers and hybrids with potent antimalarial and antiviral activities. Bioorg Med Chem. 2019;27:110–5. https://doi.org/10.1016/j.bmc.2018.11.018.

Article  CAS  PubMed  Google Scholar 

Dinh Ngoc T, Moons N, Kim Y, De Borggraeve W, Mashentseva A, Andrei G, Snoeck R, Balzarini J, Dehaen W. Synthesis of triterpenoid triazine derivatives from allobetulone and betulonic acid with biological activities. Bioorg Med Chem. 2014;22:3292–3300. https://doi.org/10.1016/j.bmc.2014.04.061.

Article  CAS  PubMed  Google Scholar 

Pohjala L, Alakurtti S, Ahola T, Yli-Kauhaluoma J, Tammela P. Betulin-derived compounds as inhibitors of alphavirus replication. J Nat Prod. 2009;72:1917–26. https://doi.org/10.1021/np9003245.

Article  CAS  PubMed  Google Scholar 

Spivak AY, Galimshina ZR, Nedopekina DA, Odinokov VN. Synthesis of new C-2 triazole-linked analogs of triterpenoid pentacyclic saponins. Chem Nat Compd. 2018;54:315–23. https://doi.org/10.1007/s10600-018-2331-1.

Article  CAS  Google Scholar 

Spivak AY, Gubaidullin RR, Galimshina ZR, Nedopekina DA, Odinokov VN. Effective synthesis of novel C(2)-propargyl derivatives of betulinic and ursolic acids and their conjugation with β-D-glucopyranoside azides via click chemistry. Tetrahedron. 2016;72:1249–56. https://doi.org/10.1016/J.TET.2016.01.024.

Article  CAS  Google Scholar 

Spivak AY, Nedopekina DA, Galimshina ZR, Khalitova RR, Sadretdinova ZR, Gubaidullin RR, Odinokov VN. Click chemistry-assisted synthesis of novel C-2 triazole-linked betulinic acid conjugates with azidothymidine as potential anti-HIV agents. Arkivoc. 2018;VII:1–19. https://doi.org/10.24820/ark.5550190.p010.632.

Article  CAS  Google Scholar 

Khusnutdinova EF, Bremond P, Petrova AV, Kukovinets OS, Kazakova OB. Synthesis of lupane mono- and bis-C19-(1,2,3-triazolyl)-triterpenoids by “Click” reaction. Lett Org Chem. 2017;14:743–7.

Article  CAS  Google Scholar 

Pokorny J, Borkova L, Urban M. Click reactions in chemistry of triterpenes—advances towards development of potential therapeutics. Curr Med Chem. 2018;25:636–58. https://doi.org/10.2174/0929867324666171009122612.

Article  CAS  PubMed  Google Scholar 

Csuk R, Deigner HP. The potential of click reactions for the synthesis of bioactive triterpenes. Bioorg Med Chem Lett. 2019;29:949–58. https://doi.org/10.1016/j.bmcl.2019.02.020.

Article  CAS  PubMed  Google Scholar 

Yu F, Wang Q, Zhang Z, Peng Y, Qiu Y, Shi Y, Zheng Y, Xiao S, Wang H, Huang X, Zhu L, Chen K, Zhao C, Zhang C, Yu M, Sun D, Zhang L, Zhou D. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors. J Med Chem. 2013;56:4300–4019. https://doi.org/10.1021/jm301910a.

Article  CAS  PubMed  Google Scholar 

Xiao S, Wang Q, Si L, Shi Y, Wang H, Yu F, Zhang Y, Li Y, Zheng Y, Zhang C, Wang C, Zhang L, Zhou D. Synthesis and anti-HCV entry activity studies of β-cyclodextrin-pentacyclic triterpene conjugates. ChemMedChem. 2014;9:1060–70. https://doi.org/10.1002/cmdc.201300545.

Article  CAS  PubMed  Google Scholar 

Xiao S, Wang Q, Si L, Zhou X, Zhang Y, Zhang L, Zhou D. Synthesis and biological evaluation of novel pentacyclic triterpene α-cyclodextrin conjugates as HCV entry inhibitors. Eur J Med Chem. 2016;124:1–9. https://doi.org/10.1016/j.ejmech.2016.08.020.

Article  CAS  PubMed  Google Scholar 

Wang C, Lu L, Na H, Li X, Wang Q, Jiang X, Xu X, Yu F, Zhang T, Li J, Zhang Z, Zheng B, Liang G, Cai L, Jiang S, Liu K. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: a promising strategy for discovering new antiviral therapeutics. J Med Chem. 2014;57:7342–54. https://doi.org/10.1021/jm500763m.

Article  CAS  PubMed  Google Scholar 

Roman G. Mannich bases in medicinal chemistry and drug design. Eur J Med Chem. 2015;89:743–816. https://doi.org/10.1016/j.ejmech.2014.10.076.

Article  CAS  PubMed  Google Scholar 

Kazakova OB, Medvedeva NI, Tolstikov GA, Kukovinets OS, Yamansarov EY, Spirikhin LV, Gubaidullin AT. Synthesis of terminal acetylenes using POCl3 in pyridine as applied to natural triterpenoids. Mendeleev Commun. 2010;20:234–6. https://doi.org/10.1016/j.mencom.2010.06.018.

Article  CAS  Google Scholar 

Khusnutdinova EF, Apryshko GN, Petrova AV, Kukovinets OS, Kazakova OB. The synthesis and selective cytotoxicity of new Mannich bases, derivatives of 19- and 28-alkynyltriterpenoids. Russ J Bioorg Chem. 2018;44:123–7. https://doi.org/10.1134/S1068162018010090.

Article  CAS  Google Scholar 

Khusnutdinova EF, Petrova AV, Kukovinets OS, Kazakova OB. Synthesis and cytotoxicity of 28-N-propargylaminoalkylated 2,3-indolotriterpenic acids. Nat Prod Commun. 2018;13:665–8. https://doi.org/10.1177/1934578X1801300603

Comments (0)

No login
gif