Ten Cate JM, Zaura E. The numerous microbial species in oral biofilms: how could antibacterial therapy be effective? Adv Dent Res. 2012;24(2):108–11. https://doi.org/10.1177/0022034512450028.
Matsumoto-Nakano M. Role of Streptococcus mutans surface proteins for biofilm formation. Jpn Dent Sci Rev. 2018;54(1):22–9.
Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv. 2016;34(7):1225–44. https://doi.org/10.1016/j.biotechadv.2016.08.004.
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–75. https://doi.org/10.1038/nrmicro.2016.94.
Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact. 2016;15(1):165.
Article PubMed PubMed Central Google Scholar
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15(12):740–55.
Article PubMed PubMed Central Google Scholar
Fleming D, Rumbaugh KP. Approaches to dispersing medical biofilms. Microorganisms. 2017;5(2):15.
Article PubMed PubMed Central Google Scholar
Speziale P, Pietrocola G, Foster TJ, Geoghegan JA. Protein-based biofilm matrices in Staphylococci. Front Cell Infect Microbiol. 2014;4:171.
Article PubMed PubMed Central Google Scholar
Saggu SK, Jha G, Mishra PC. Enzymatic degradation of biofilm by metalloprotease from Microbacterium sp. SKS10. Front Bioeng Biotechnol. 2019;7:192.
Article PubMed Central Google Scholar
Deng Y, Gruppen H, Wierenga PA. Comparison of protein hydrolysis catalyzed by bovine, porcine, and human trypsins. J Agric Food Chem. 2018;66(16):4219–32.
Article PubMed PubMed Central Google Scholar
Metcalf DG, Bowler PG. Biofilm delays wound healing: a review of the evidence. Burns Trauma. 2013;1(1):5–12.
Niazi SA, Clark D, Do T, Gilbert SC, Foschi F, Mannocci F, et al. The effectiveness of enzymic irrigation in removing a nutrient-stressed endodontic multispecies biofilm. Int Endod J. 2014;47(8):756–68. https://doi.org/10.1111/iej.12214.
Niazi SA, Al-Ali WM, Patel S, Foschi F, Mannocci F. Synergistic effect of 2% chlorhexidine combined with proteolytic enzymes on biofilm disruption and killing. Int Endod J. 2015;48(12):1157–67. https://doi.org/10.1111/iej.12420.
Mugita N, Nambu T, Takahashi K, Wang PL, Komasa Y. Proteases, actinidin, papain and trypsin reduce oral biofilm on the tongue in elderly subjects and in vitro. Arch Oral Biol. 2017;82:233–40. https://doi.org/10.1016/j.archoralbio.2017.04.035.
Rismanchian M, Nosouhian S, Shahabouee M, Davoudi A, Nourbakhshian F. Effect of conventional and contemporary disinfectant techniques on three peri-implantitis associated microbiotas. Am J Dent. 2017;30(1):23–6.
Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66(3):486–505 (table of contents).
Article PubMed PubMed Central Google Scholar
Guilhen C, Forestier C, Balestrino D. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol. 2017;105(2):188–210. https://doi.org/10.1111/mmi.13698.
Girish VM, Liang H, Aguilan JT, Nosanchuk JD, Friedman JM, Nacharaju P. Anti-biofilm activity of garlic extract loaded nanoparticles. Nanomedicine. 2019;20:102009.
Pleszczyńska M, Wiater A, Bachanek T, Szczodrak J. Enzymes in therapy of biofilm-related oral diseases. Biotechnol Appl Biochem. 2017;64(3):337–46. https://doi.org/10.1002/bab.1490.
Sebaa S, Hizette N, Boucherit-Otmani Z, Courtois P. Dose-dependent effect of lysozyme upon Candida albicans biofilm. Mol Med Rep. 2017;15(3):1135–42.
Article PubMed PubMed Central Google Scholar
Fleming D, Chahin L, Rumbaugh K. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.01998-16.
Article PubMed PubMed Central Google Scholar
Baker P, Hill PJ, Snarr BD, Alnabelseya N, Pestrak MJ, Lee MJ, et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv. 2016;2(5):e1501632.
Article PubMed PubMed Central Google Scholar
Otsuka R, Imai S, Murata T, Nomura Y, Okamoto M, Tsumori H, et al. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol Immunol. 2015;59(1):28–36. https://doi.org/10.1111/1348-0421.12214.
Karygianni L, Paqué PN, Attin T, Thurnheer T. Single DNase or proteinase treatment induces change in composition and structural integrity of multispecies oral biofilms. Antibiotics (Basel). 2021;10(4):400.
De Backer S, Sabirova J, De Pauw I, De Greve H, Hernalsteens JP, Goossens H, et al. Enzymes catalyzing the TCA- and urea cycle influence the matrix composition of biofilms formed by methicillin-resistant Staphylococcus aureus USA300. Microorganisms. 2018;6(4):113.
Article PubMed PubMed Central Google Scholar
Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells.” J Bacteriol. 2007;189(22):7945–7.
Article PubMed PubMed Central Google Scholar
Zhou J, Meng X, Han Q, Huang Y, Huo L, Lei Y. An in vitro study on the degradation of multispecies biofilm of periodontitis-related microorganisms by bovine trypsin. Front Microbiol. 2022;13:951291. https://doi.org/10.3389/fmicb.2022.951291.
Article PubMed Central Google Scholar
Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health. 2021;18(14):7602.
Article PubMed PubMed Central Google Scholar
Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668–81. https://doi.org/10.1016/j.tim.2020.03.016.
Comments (0)