The effects of substituting red and processed meat for mycoprotein on biomarkers of cardiovascular risk in healthy volunteers: an analysis of secondary endpoints from Mycomeat

Abete I, Romaguera D, Vieira AR, Lopez de Munain A, Norat T (2014) Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br J Nutr 112(5):762–775. https://doi.org/10.1017/s000711451400124x

Article  CAS  PubMed  Google Scholar 

Alshahrani SM, Fraser GE, Sabate J, Knutsen R, Shavlik D, Mashchak A et al (2019) Red and processed meat and mortality in a low meat intake population. Nutrients 11:3. https://doi.org/10.3390/nu11030622

Article  CAS  Google Scholar 

Micha R, Michas G, Mozaffarian D (2012) Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes—an updated review of the evidence. Curr Atheroscler Rep 14(6):515–524. https://doi.org/10.1007/s11883-012-0282-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

van den Brandt PA (2019) Red meat, processed meat, and other dietary protein sources and risk of overall and cause-specific mortality in The Netherlands Cohort Study. Eur J Epidemiol 34(4):351–369. https://doi.org/10.1007/s10654-019-00483-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong VW, Van Horn L, Greenland P, Carnethon MR, Ning H, Wilkins JT et al (2020) Associations of processed meat, unprocessed red meat, poultry, or fish intake with incident cardiovascular disease and all-cause mortality. JAMA Intern Med. https://doi.org/10.1001/jamainternmed.2019.6969

Article  PubMed  PubMed Central  Google Scholar 

Glenn AJ, Viguiliouk E, Seider M, Boucher BA, Khan TA, Blanco Mejia S et al (2019) Relation of vegetarian dietary patterns with major cardiovascular outcomes: a systematic review and meta-analysis of prospective cohort studies. Front Nutr 6:80. https://doi.org/10.3389/fnut.2019.00080

Article  PubMed  PubMed Central  Google Scholar 

Tharrey M, Mariotti F, Mashchak A, Barbillon P, Delattre M, Fraser GE (2018) Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study-2 cohort. Int J Epidemiol 47(5):1603–1612. https://doi.org/10.1093/ije/dyy030

Article  PubMed  PubMed Central  Google Scholar 

Song M, Fung TT, Hu FB, Willett WC, Longo VD, Chan AT et al (2016) Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med 176(10):1453–1463. https://doi.org/10.1001/jamainternmed.2016.4182

Article  PubMed  PubMed Central  Google Scholar 

Guasch-Ferre M, Satija A, Blondin SA, Janiszewski M, Emlen E, O’Connor LE et al (2019) Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation 139(15):1828–1845. https://doi.org/10.1161/circulationaha.118.035225

Article  PubMed  Google Scholar 

Haub MD, Wells AM, Campbell WW (2005) Beef and soy-based food supplements differentially affect serum lipoprotein-lipid profiles because of changes in carbohydrate intake and novel nutrient intake ratios in older men who resistive-train. Metabolism 54(6):769–774. https://doi.org/10.1016/j.metabol.2005.01.019

Article  CAS  PubMed  Google Scholar 

Li SS, Blanco-Mejia S, Lytvyn L, Stewart SE, Viguiliouk E, Ha V et al (2017) Effect of plant protein on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 6:12. https://doi.org/10.1161/jaha.117.006659

Article  Google Scholar 

Wiebe SL, Bruce VM, McDonald BE (1984) A comparison of the effect of diets containing beef protein and plant proteins on blood lipids of healthy young men. Am J Clin Nutr 40(5):982–989. https://doi.org/10.1093/ajcn/40.5.982

Article  CAS  PubMed  Google Scholar 

Bergeron N, Chiu S, Williams PT, King MS, Krauss RM (2019) Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial. Am J Clin Nutr 110(1):24–33. https://doi.org/10.1093/ajcn/nqz035

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, Jia X et al (2019) Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J 40(7):583–594. https://doi.org/10.1093/eurheartj/ehy799

Article  CAS  PubMed  Google Scholar 

Cheah I, Sadat Shimul A, Liang J, Phau I (2020) Drivers and barriers toward reducing meat consumption. Appetite 149:104636. https://doi.org/10.1016/j.appet.2020.104636

Article  PubMed  Google Scholar 

Graca J, Oliveira A, Calheiros MM (2015) Meat, beyond the plate. Data-driven hypotheses for understanding consumer willingness to adopt a more plant-based diet. Appetite 90:80–90. https://doi.org/10.1016/j.appet.2015.02.037

Article  PubMed  Google Scholar 

Malek L, Umberger WJ, Goddard E (2019) Committed vs. uncommitted meat eaters: understanding willingness to change protein consumption. Appetite 138:115–126. https://doi.org/10.1016/j.appet.2019.03.024

Article  PubMed  Google Scholar 

Sanchez-Sabate R, Sabaté J (2019) Consumer attitudes towards environmental concerns of meat consumption: a systematic review. Int J Environ Res Public Health 16(7):1220

Article  PubMed  PubMed Central  Google Scholar 

Kumar P, Chatli MK, Mehta N, Singh P, Malav OP, Verma AK (2017) Meat analogues: health promising sustainable meat substitutes. Crit Rev Food Sci Nutr 57(5):923–932. https://doi.org/10.1080/10408398.2014.939739

Article  CAS  PubMed  Google Scholar 

Hu FB, Otis BO, McCarthy G (2019) Can plant-based meat alternatives be part of a healthy and sustainable diet? JAMA 322(16):1547–1548. https://doi.org/10.1001/jama.2019.13187

Article  PubMed  Google Scholar 

Finnigan TJA, Wall BT, Wilde PJ, Stephens FB, Taylor SL, Freedman MR (2019) Mycoprotein: the future of nutritious nonmeat protein, a symposium review. Curr Dev Nutr 3(6):nzz021. https://doi.org/10.1093/cdn/nzz021

Article  PubMed  PubMed Central  Google Scholar 

Souza-Filho PF, Andersson D, Ferreira JA, Taherzadeh MJ (2019) Mycoprotein: environmental impact and health aspects. World J Microbiol Biotechnol 35(10):147. https://doi.org/10.1007/s11274-019-2723-9

Article  PubMed  PubMed Central  Google Scholar 

Farsi DN, Uthumange D, Munoz Munoz J, Commane DM (2022) The nutritional impact of replacing dietary meat with meat alternatives in the UK: a modelling analysis using nationally representative data. Br J Nutr 127(11):1731–1741. https://doi.org/10.1017/s0007114521002750

Article  CAS  PubMed  Google Scholar 

Coelho MOC, Monteyne AJ, Dirks ML, Finnigan TJA, Stephens FB, Wall BT (2020) Daily mycoprotein consumption for one week does not affect insulin sensitivity or glycaemic control but modulates the plasma lipidome in healthy adults: a randomised controlled trial. Br J Nutr 2020:1–38. https://doi.org/10.1017/S0007114520002524

Article  CAS  Google Scholar 

Turnbull WH, Leeds AR, Edwards DG (1992) Mycoprotein reduces blood lipids in free-living subjects. Am J Clin Nutr 55(2):415–419. https://doi.org/10.1093/ajcn/55.2.415

Article  CAS  PubMed  Google Scholar 

Turnbull WH, Leeds AR, Edwards GD (1990) Effect of mycoprotein on blood lipids. Am J Clin Nutr 52(4):646–650. https://doi.org/10.1093/ajcn/52.4.646

Article  CAS  PubMed  Google Scholar 

Papier K, Knuppel A, Syam N, Jebb SA, Key TJ (2021) Meat consumption and risk of ischemic heart disease: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021:1–12. https://doi.org/10.1080/10408398.2021.1949575

Article  CAS  Google Scholar 

Farsi DN, Gallegos JL, Koutsidis G, Nelson A, Finnigan TJA, Cheung W et al (2023) Substituting meat for mycoprotein reduces genotoxicity and increases the abundance of beneficial microbes in the gut: Mycomeat, a randomised crossover control trial. Eur J Nutr. https://doi.org/10.1007/s00394-023-03088-x

Article  PubMed  PubMed Central  Google Scholar 

Nutritics (2021). *Education edition, v566, Dublin, Nutritics

Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

Article  CAS  PubMed  Google Scholar 

Kuhnle GGC, Story GW, Reda T, Mani AR, Moore KP, Lunn JC et al (2007) Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radical Biol Med 43(7):1040–1047. https://doi.org/10.1016/j.freeradbiomed.2007.03.011

Article  CAS  Google Scholar 

D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM et al (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753. https://doi.org/10.1161/circulationaha.107.699579

Article  PubMed  Google Scholar 

Hippisley-Cox J, Coupland C, Brindle P (2017) Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 357:j2099. https://doi.org/10.1136/bmj.j2099

Article  PubMed  PubMed Central  Google Scholar 

Lloyd-Jones DM, Braun LT, Ndumele CE, Smith SC, Sperling LS, Virani SS et al (2019) Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. Circulation 139(25):e1162–e1177. https://doi.org/10.1161/CIR.0000000000000638

Article  PubMed 

Comments (0)

No login
gif