NR1 Splicing Variant NR1a in Cerebellar Granule Neurons Constitutes a Better Motor Learning in the Mouse

Papale AE, Hooks BM. Circuit changes in motor cortex during motor skill learning. Neuroscience. 2018;368:283–97.

Article  CAS  PubMed  Google Scholar 

Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1(1):41–50.

Article  CAS  PubMed  Google Scholar 

Tulving E, Markowitsch HJ. Episodic and declarative memory: role of the hippocampus. Hippocampus. 1998;8(3):198–204.

Article  CAS  PubMed  Google Scholar 

Llinas R, Welsh JP. On the cerebellum and motor learning. Curr Opin Neurobiol. 1993;3(6):958–65.

Article  CAS  PubMed  Google Scholar 

Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81(3):1143–95.

Article  CAS  PubMed  Google Scholar 

Shidara M, et al. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature. 1993;365(6441):50–2.

Article  CAS  PubMed  Google Scholar 

Deiber MP, et al. Frontal and parietal networks for conditional motor learning: a positron emission tomography study. J Neurophysiol. 1997;78(2):977–91.

Article  CAS  PubMed  Google Scholar 

Jenkins IH, et al. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994;14(6):3775–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Mier H, et al. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol. 1998;80(4):2177–99.

Article  PubMed  Google Scholar 

Halsband U, Lange RK. Motor learning in man: a review of functional and clinical studies. J Physiol Paris. 2006;99(4–6):414–24.

Article  PubMed  Google Scholar 

Boyden ES, et al. Selective engagement of plasticity mechanisms for motor memory storage. Neuron. 2006;51(6):823–34.

Article  CAS  PubMed  Google Scholar 

Narayanan S, Thirumalai V. Contributions of the cerebellum for predictive and instructional control of movement. Curr Opin Physiol. 2019;8:146–51.

Article  PubMed  PubMed Central  Google Scholar 

Lanore F, et al. Cerebellar granule cell axons support high-dimensional representations. Nat Neurosci. 2021;24(8):1142–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Proville RD, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17(9):1233–9.

Article  CAS  PubMed  Google Scholar 

Arenz A, et al. The contribution of single synapses to sensory representation in vivo. Science. 2008;321(5891):977–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schonewille M, et al. NMDARs in granule cells contribute to parallel fiber-Purkinje cell synaptic plasticity and motor learning. Proc Natl Acad Sci U S A. 2021;118(37):e2102635118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ten Brinke MM, et al. Evolving models of pavlovian conditioning: cerebellar cortical dynamics in awake behaving mice. Cell Rep. 2015;13(9):1977–88.

Article  PubMed  PubMed Central  Google Scholar 

Wada N, Funabiki K, Nakanishi S. Role of granule-cell transmission in memory trace of cerebellum-dependent optokinetic motor learning. Proc Natl Acad Sci U S A. 2014;111(14):5373–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13(9):619–35.

Article  CAS  PubMed  Google Scholar 

Shimizu H, et al. Massive cell death of cerebellar granule neurons accompanied with caspase-3-like protease activation and subsequent motor discoordination after intracerebroventricular injection of vincristine in mice. Neuroscience. 2002;115(1):55–65.

Article  CAS  PubMed  Google Scholar 

Galliano E, et al. Impact of NMDA receptor overexpression on cerebellar Purkinje cell activity and motor learning. eNeuro, 2018;5(1):ENEURO.0270-17.2018.

Kono M, et al. Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum. J Physiol. 2019;597(3):903–20.

Article  CAS  PubMed  Google Scholar 

Hasan MT, et al. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice. Nat Commun. 2013;4:2258.

Article  PubMed  Google Scholar 

Duan Y, et al. Striatal GluN2B involved in motor skill learning and stimulus-response learning. Neuropharmacology. 2018;135:73–85.

Article  CAS  PubMed  Google Scholar 

Umemori H, et al. Impairment of N-methyl-D-aspartate receptor-controlled motor activity in LYN-deficient mice. Neuroscience. 2003;118(3):709–13.

Article  CAS  PubMed  Google Scholar 

Sanchez-Perez A, et al. Modulation of NMDA receptors in the cerebellum. II. Signaling pathways and physiological modulators regulating NMDA receptor function. Cerebellum. 2005;4(3):162–70.

Article  CAS  PubMed  Google Scholar 

Kadotani H, et al. Motor discoordination results from combined gene disruption of the NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J Neurosci. 1996;16(24):7859–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feyissa AM, et al. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(1):70–5.

Article  CAS  PubMed  Google Scholar 

Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE. 2004;2004(255):re16.

Article  PubMed  Google Scholar 

Hansen KB, et al. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol. 2018;150(8):1081–105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou L, Duan J. The C-terminus of NMDAR GluN1-1a subunit translocates to nucleus and regulates synaptic function. Front Cell Neurosci. 2018;12:334.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu X, Zhou L, Lu W. An NMDA receptor-dependent mechanism underlies inhibitory synapse development. Cell Rep. 2016;14(3):471–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang YP, et al. Genetic enhancement of learning and memory in mice. Nature. 1999;401(6748):63–9.

Article  CAS  PubMed  Google Scholar 

Jiao J, et al. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning. PLoS One. 2008;3(2): e1684.

Article  PubMed  PubMed Central  Google Scholar 

Laurie DJ, et al. The distribution of splice variants of the NMDAR1 subunit mRNA in adult rat brain. Brain Res Mol Brain Res. 1995;32(1):94–108.

Article  CAS  PubMed  Google Scholar 

Laurie DJ, Seeburg PH. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci. 1994;14(5 Pt 2):3180–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Metaxas A, et al. Binding characterization of N-(2-chloro-5-thiomethylphenyl)-N’-(3-[(3) H]3 methoxy phenyl)-N’-methylguanidine ([(3) H]GMOM), a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist. Pharmacol Res Perspect. 2019;7(1):e00458.

Article  PubMed  PubMed Central  Google Scholar 

Bootsma JM, et al. Neural correlates of motor skill learning are dependent on both age and task difficulty. Front Aging Neurosci. 2021;13:643132.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif